1887

Abstract

SUMMARY

The genomes of phages 5006M, kanamycin resistance transducing variant 5006 M HFT and kanamycin-ampicillin resistance transducing variant 5006M HFT have been compared. Homo- and heteroduplex and partial denaturation mapping analyses were performed. The results confirm a sequential headful packaging mechanism, facilitate mapping of the ampicillin resistance marker, demonstrate a hairpin loop structure in both variants, reveal a common insertion site for 8 to 9 × 10 mol. wt. non-phage DNA in both variants and implicate a role for the non-inducible cryptic host strain prophage 5006M in the generation cycle of the variant phages.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-49-1-33
1980-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/49/1/JV0490010033.html?itemId=/content/journal/jgv/10.1099/0022-1317-49-1-33&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1959 In Bacteriophages New York: Interscience Publishers;
    [Google Scholar]
  2. Brevet J., Kopecko D. J., Nisen P., Cohen S. N. 1977 In DNA Insertion Elements, Plasmids and Episomes Edited by Bukhari A. I., Shapiro J. A., Adhaya S. L. Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  3. Coetzee J. N. 1974; High frequency transduction of kanamycin resistance in Proteus mirabilis. Journal of General Microbiology 84:285–296
    [Google Scholar]
  4. Coetzee J. N. 1975; High frequency transduction of resistance to ampicillin and kanamycin in Proteus mirabilis. Journal of General Microbiology 87:173–176
    [Google Scholar]
  5. Coetzee J. N. 1976; Derivation and properties of Proteus mirabilis systems for high frequency transduction of streptomycin-sulphonamide and streptomycin-sulphonamide-kanamycin resistance. Journal of General Microbiology 96:95–107
    [Google Scholar]
  6. Coetzee J. N. 1977; Derivation of a Proteus mirabilis converting phage for ampicillin resistance. Journal of General Microbiology 99:127–138
    [Google Scholar]
  7. Coetzee J. N., Smit J. A. 1970 Properties of Proteus mirabilis phage 13vir. Journal of General Virology 9:247–249
    [Google Scholar]
  8. Coetzee W. F., Pretorius G. H. J. 1979; Factors which influence the electron microscopic appearance of DNA when benzylalkyldimethylammonium chloride is used. Journal of Ultrastructure Research 67:33–39
    [Google Scholar]
  9. Jackson E. N., Jackson D. A., Deans R. J. 1978; Eco RI analysis of bacteriophage P22 packaging. Journal of Molecular Biology 118:365–388
    [Google Scholar]
  10. Krizsanovich K. 1973; Cryptic lysogeny in Proteus mirabilis. Journal of General Virology 19:311–320
    [Google Scholar]
  11. Krizsanovich-Williams K. 1975; Specialized transduction of a leucine marker by Proteus mirabilis phage 5006M. Journal of General Microbiology 91:213–216
    [Google Scholar]
  12. Ohtsubu H., Ohtsubu E. 1976; Isolation of inverted repeat sequences, including IS1, IS2 and IS3 in Escherichia coli plasmids. Proceedings of the National Academy of Sciences of the United States of America 73:2316–2320
    [Google Scholar]
  13. Pretorius G. H. J., Coetzee W. F. 1979; Proteus mirabilis phage 5006M: a physical characterization. Journal of General Virology 45:389–395
    [Google Scholar]
  14. Tye B. K., Huberman J. A., Botstein D. 1974; Non-random circular permutation of phage P22 DNA. Journal of Molecular Biology 85:501–532
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-49-1-33
Loading
/content/journal/jgv/10.1099/0022-1317-49-1-33
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error