Biological and Molecular Biological Characterization of the Virus Progeny from Transformed Clones MuSV-124 and MuSV-349: Evidence for MuLV-specific Nucleotide Sequences in the MoMuSV Size Class of RNA from MoMuSV-124 Free

Abstract

SUMMARY

The genetic information of MoMuSV-349 and MoMuSV-124, two clones of productively transformed TB cells, was distributed between two size classes of RNA (mol. wt. 2.9 × 10 and 1.9 × 10) in the proportions of 5:1. Some preparations of MoMuSV-124 lacked the large RNA. The virions produced by both clones also contained all the nucleotide sequences of Moloney leukaemia virus and the ratio of MuSV:MuLV produced by the two clones differed markedly. The distribution of the sequences specific for Moloney murine leukaemia virus (MoMuLV) between the two size classes of RNA was studied using molecular hybridization to DNA probes complementary to and representative of: (i) the Moloney murine sarcoma virus (MoMuSV) RNA genome (mol. wt. 1.9 × 10); (ii) those nucleotide sequences shared by MoMuSV and MoMuLV; (iii) nucleotide sequences specific for MoMuSV; (iv) nucleotide sequences specific for MoMuLV. The only detectable Moloney leukaemia virus-specific nucleotide sequences present in MoMuSV-124 virions were in the RNA of mol. wt. 1.9 × 10, whereas these sequences were detected in the RNA of mol. wt. 2.9 × 10 isolated from MoMuSV-349 virions. The biological properties of the replicating information in MoMuSV-124 suggest that, consistent with the small size of RNA, it is defective, whereas MoMuSV-349 produces virions containing an intact MoMuLV genome, competent for replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-47-2-407
1980-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/47/2/JV0470020407.html?itemId=/content/journal/jgv/10.1099/0022-1317-47-2-407&mimeType=html&fmt=ahah

References

  1. Aaronson S. A., Rowe W. P. 1970; Non-producer clones of murine sarcoma virus transformed Balb/3T3 cells. Virology 42:9–19
    [Google Scholar]
  2. Aaronson S. A., Weaver C. 1971; Characterization of murine sarcoma virus (Kirsten) transformation of mouse and human cells. Journal of General Virology 13:245–252
    [Google Scholar]
  3. Andersson P., Goldfarb M. P., Weinberg R. A. 1979; A defined subgenomic fragment of in vitro synthesized Moloney sarcoma virus DNA can induce cell transformation upon transfection. Cell 16:63–73
    [Google Scholar]
  4. Ball J. K., Huh T. Y., McCarter J. A. 1964; On the statistical distribution of epidermal papillomata in mice. British Journal of Cancer 18:120–123
    [Google Scholar]
  5. Ball J. K., McCarter J. A., Sunderland S. M. 1973; Evidence for helper-independent murine sarcoma virus. I. Segregation of replication-defective and transformation-defective viruses. Virology 56:268–284
    [Google Scholar]
  6. Ball J. K., Dekaban G. S., Loosmore S. M., Chan S. K., McCarter J. A. 1979; Sub-genomic RNA in Moloney leukemia virus grown in lymphoid-derived cell lines consists primarily of homologous viral RNA. Nucleic Acids Research 7:1091–1108
    [Google Scholar]
  7. Barbacid M., Stephenson J. R., Anderson S. A. 1976; Gag gene of mammalian type C RNA tumor viruses. Nature, London 262:554–559
    [Google Scholar]
  8. Benz E. W., Dina D. 1979; Moloney murine sarcoma virions synthesize full-genome-length doublestranded DNA in vitro. Proceedings of the National Academy of Sciences of the United States of America 76:3294–3298
    [Google Scholar]
  9. Besmer P., Olshevsky V., Baltimore D., Dolberg D., Fan H. 1979; Virus-like 30S RNA in mouse cells. Journal of Virology 29:1168–1176
    [Google Scholar]
  10. Bilello J. A., Strand M., August J. T. 1977; Expression of viral envelope glycoprotein and transformation genes in cells transformed by a defective Kirsten murine sarcoma virus. Virology 77:233–244
    [Google Scholar]
  11. Bondurant M., Ramabhadran R., Green M., Wold W. S. 1979; ‘Sarc’ sequence transcription in Moloney sarcoma virus-transformed non-producer cell lines. Journal of Virology 29:76–82
    [Google Scholar]
  12. Canaani E., Duesberg P., Dina D. 1977; Cleavage map of linear mouse sarcoma virus DNA. Proceedings of the National Academy of Sciences of the United States of America 74:29–33
    [Google Scholar]
  13. Deng C. T., Wimmer E. 1978; Two different murine sarcoma virus isolates have homologous genome sequences: implication for their origins. Virology 89:309–313
    [Google Scholar]
  14. Dina D. 1978; The ‘sarcoma-specific’ region of Moloney murine sarcoma virus 124. Proceedings of the National Academy of Sciences of the United States of America 75:2694–2698
    [Google Scholar]
  15. Dina D., Penhoet E. E. 1978; Viral gene expression in murine sarcoma virus (murine leukemia virus)-infected cells. Journal of Virology 27:768–775
    [Google Scholar]
  16. Dina D., Beemon K., Duesberg P. 1976; The 30S Moloney sarcoma virus RNA contains leukemia virus nucleotide sequences. Cell 9:299–309
    [Google Scholar]
  17. Donoghue D. J., Sharp P. A., Weinberg R. A. 1979; An MSV-specific subgenomic mRNA in MSV-transformed G8-124 cells. Cell 17:53–63
    [Google Scholar]
  18. Fan H., Baltimore D. 1973; RNA metabolism of murine leukemia virus: detection of virus-specific RNA sequences in infected and uninfected cells and identification of virus-specific messenger RNA. Journal of Molecular Biology 80:93–117
    [Google Scholar]
  19. Fan H., Verma I. M. 1978; Size analysis and relationship of murine leukemia virus-specific mRNA’s: evidence for transposition of sequences during synthesis and processing of subgenomic mRNA. Journal of Virology 26:468–478
    [Google Scholar]
  20. Hartley J. W., Rowe W. P. 1966; Production of altered cell foci in tissue culture by defective Moloney sarcoma virus particles. Proceedings of the National Academy of Sciences of the United States of America 55:780–786
    [Google Scholar]
  21. Hartley J. W., Wolford N. K., Old L. J., Rowe W. P. 1977; A new class of murine leukemia virus association with development of spontaneous lymphomas. Proceedings of the National Academy of Sciences of the United States of America 74:789–792
    [Google Scholar]
  22. Harvey J. J., East J. 1971; The murine sarcoma virus (MSV). International Review of Experimental Pathology 10:265–360
    [Google Scholar]
  23. Howk R. S., Troxler D. H., Lowy D., Duesberg P. H., Scolnick E. M. 1978; Identification of a 30 SRNA with properties of a defective type C virus in murine cells. Journal of Virology 25:115–123
    [Google Scholar]
  24. Hu S., Davidson N., Verma I. M. 1977; A heteroduplex study of the sequence relationships between the RNAs of M-MSV and M-MLV. Cell 10:469–477
    [Google Scholar]
  25. Leong J. A., Garapin A. C., Jackson N., Fanshier L., Levinson W., Bishop J. M. 1972; Virus-Specific ribonucleic acid in cells producing Rous sarcoma virus: detection and characterization. Journal of Virology 9:891–902
    [Google Scholar]
  26. Lo A. C. H., Ball J. K. 1974; Evidence for helper-independent murine sarcoma virus. II. Differences between the ribonucleic acids of clone-purified leukemia virus, helper independent and helper dependent sarcoma viruses. Virology 59:545–555
    [Google Scholar]
  27. McCarter J. A. 1977; Genetic studies on the ploidy of Moloney murine leukemia virus. Journal of Virology 22:9–15
    [Google Scholar]
  28. Maisel J., Dina D., Duesberg P. 1977; Murine sarcoma viruses: the helper-independence reported for a Moloney variant is unconfirmed: distinct strains differ in the size of their RNAs. Virology 76:295–312
    [Google Scholar]
  29. Maisel J., Bender W., Hu S., Duesberg P. H., Davidson N. 1978; Structure of 50 to 70S RNA from Moloney sarcoma virus. Journal of Virology 25:384–395
    [Google Scholar]
  30. Parks W. P., Howk R. S., Anisowicz A., Scolnick E. M. 1976; Deletion mapping of Moloney type C virus: polypeptide and nucleic acid expression in different transforming virus isolates. Journal of Virology 18:491–503
    [Google Scholar]
  31. Peebles P. T. 1975; An in vitro focus induction assay for xenotropic murine leukemia virus, feline leukemia virus, and the feline-primate viruses RD-114/CCC/M-7. Virology 67:288–292
    [Google Scholar]
  32. Peebles P. T., Gerwin B. J., Scolnick E. M. 1976; Murine sarcoma virus defectiveness: serological detection of only helper virus reverse transcriptase in sarcoma virus rescued from nonmurine S+L− cells. Virology 70:313–323
    [Google Scholar]
  33. Philipson L., Andersson P., Olshevsky V., Weinberg R., Baltimore D. 1978; Translation Of MuLV and MSV RNAs in nuclease-treated reticulocyte extracts: enhancement of the gag-pol polypeptide with yeast suppressor tRNA. Cell 13:189–199
    [Google Scholar]
  34. Rothenberg E., Baltimore D. 1976; Synthesis of long, representative DNA copies of the murine RNA tumor virus genome. Journal of Virology 17:168–174
    [Google Scholar]
  35. Scolnick E. J., Howk R. S., Anisowicz A., Peebles P. T., Scher C. D., Parks W. P. 1975; Separation of sarcoma virus-specific and leukemia virus-specific genetic sequences of Moloney sarcoma virus. Proceedings of the National Academy of Sciences of the United States of America 72:4650–4654
    [Google Scholar]
  36. Shields A., Rosenberg N., Baltimore D. 1979; Virus production by Abelson murine leukemia virus-transformed lymphoid cells. Journal of Virology 31:557–567
    [Google Scholar]
  37. Stehelin D., Guntaka R. V., Varmus H. E., Bishop J. M. 1976; Purification of DNA complementary to nucleotide sequences required for neoplastic transformation of fibroblasts by avian sarcoma viruses. Journal of Molecular Biology 101:349–365
    [Google Scholar]
  38. Stephenson J. R., Devare S. G., Reynolds F. H. 1978; Translational products of type-C RNA tumor viruses. Advances in Cancer Research 27:1–43
    [Google Scholar]
  39. Taylor J. M., Illmensee R., Summers J. 1976; Efficient transcription of RNA into DNA by avian sarcoma virus polymerase. Biochimica et Biophysica Acta 442:324–440
    [Google Scholar]
  40. Wainberg M. A., Yu M., Israel E. 1978; Decreased production of transforming virus and altered antigenic behaviour in cultured avian sarcoma cells. Journal of General Virology 42:255–264
    [Google Scholar]
  41. Wang L. H., Duesberg P., Beemon K., Vogt P. K. 1975; Mapping RNase T1-resistant oligonucleotides of avian tumor virus RNAs: sarcoma-specific oligonucleotides are near the poly(A) end and oligonucleotides common to sarcoma and transformation-defective viruses are at the poly(A) end. Journal of Virology 16:1051–1070
    [Google Scholar]
  42. Wright B. S., O’brien P. A., Shibley G. P., Mayyasi S. A., Lasfargues J. C. 1967; Infection of an established mouse bone marrow cell line (JLS-V9) with Rauscher and Moloney leukemia viruses. Cancer Research 27:1672–1675
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-47-2-407
Loading
/content/journal/jgv/10.1099/0022-1317-47-2-407
Loading

Data & Media loading...

Most cited Most Cited RSS feed