1887

Abstract

SUMMARY

The physical state of the Epstein-Barr virus (EBV) DNA in three cell lines which spontaneously produce virus has been characterized. Circular EBV DNA molecules have been found in P3HR-1, B95-8 and M81 cells. The size of the intracellular M81 circular EBV DNA molecules is comparable with the linear virus genome isolated from virus particles but the circular P3HR-1 and B95-8 DNA molecules are shorter than the virion DNA. In addition to the circular form, some EBV DNA with physical properties indicative of integrated sequences was found in all three producer cell lines. There was no marked change in the amount of either the circular of integrated forms of EBV DNA when these producer cell lines were grown in the presence of phosphonoacetic acid to suppress the spontaneous virus production which occurs in a small percentage of the cells in untreated cultures.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-45-2-331
1979-11-01
2021-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/45/2/JV0450020331.html?itemId=/content/journal/jgv/10.1099/0022-1317-45-2-331&mimeType=html&fmt=ahah

References

  1. Adams A. 1979; The state of the EB Virus genome in transformed cells and its relationshio to host cell DNA. In The Epstein-Barr Virus pp 155–183 Edited by Epstein A. M., Achong B. G. Heidelberg: Springer-Verlag;
    [Google Scholar]
  2. Adams A., Lindahl T. 1975a; Intracellular forms of Epstein-Barr virus DNA in Raji cells. In Oncogenesis and Herpesviruses II pp 125–132 Edited by de Thé G. Epstein M. A. zur Hausen H. Lyon: IARC Scientific Publications No. 11;
    [Google Scholar]
  3. Adams A., Lindahl T. 1975b; Epstein-Barr virus genomes with properties of circular DNA molecules in carrier cells. Proceedings of The National Academy of Sciences of the United States of America 72:I477–I481
    [Google Scholar]
  4. Adams A., Lindahl T., Klein G. 1973; Linear association between cellular DNA and Epstein-Barr virus DNA in a human lymphoblastoid cell line. Proceedings of The National Academy of Sciences of the United States of America 70:2888–2892
    [Google Scholar]
  5. Adams A., Bjursell G., Kaschka-Dierich C., Lindahl T. 1977; Circular Epstein-Barr virus genomes of reduced size in a human lymphoid cell line of infectious mononucleosis origin. Journal of Virology 22:373–380
    [Google Scholar]
  6. Allen G. P., O’callaghan D. J., Randall C. C. 1977; Purification and characterization of equine herpesvirus-induced DNA polymerase. Virology 76:395–408
    [Google Scholar]
  7. Desgranges C., Lenoir G., De The G., Seigneurin J.-M., Hilgers J., Dubouch P. 1976; In vitro transforming activity of EBV. 1. Establishment and properties of two EBV strains (M81 and M72) produced by immortalized Callithrix jacchus lymphocytes. Biomedicine 25:349–352
    [Google Scholar]
  8. Given D., Kieff E. 1978; DNA of Epstein-Barr virus. IV. Linkage map of restriction enzyme fragments of the B95–8 and M81 strains of EBV. Journal of Virology 28:524–542
    [Google Scholar]
  9. Helinski D. R., Clewell D. B. 1971; Circular DNA. Annual Review of Biochemistry 40:899–942
    [Google Scholar]
  10. Hinuma Y., Konn M., Yamaguchi J., Wudarski D. J., Blakeslee J. R. Jun, Grace J. T. 1967; Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt lymphoma cell line. Journal of Virology 1:1045–1051
    [Google Scholar]
  11. Huang E. S. 1975; Human cytomegalovirus. IV. Specific inhibition of virus-induced DNA polymerase activity and viral DNA replication by phosphonoacetic acid. Journal of Virology 16:1560–1565
    [Google Scholar]
  12. Kaschka-Dierich C., Adams A., Lindahl T., Bornkamm G. W., Bjursell G., Klein G., Giovanella B. C., Singh S. 1976; Intracellular forms of Epstein-Barr virus DNA in human tumor cells in vivo. Nature, London 260:302–306
    [Google Scholar]
  13. Kaschka-Dierich C., Falk L., Bjursell G., Adams A., Lindahl T. 1977; Human lymphoblastoid cell lines derived from individuals without lymphoproliferative disease contain the same latent forms of Epstein-Barr virus DNA as those found in tumor cells. International Journal of Cancer 20:173–180
    [Google Scholar]
  14. Klein G., Gergely L., Goldstein G. 1971; Two colour immunofluorescence studies on EBV determined antigens. Clinical and Experimental Immunology 8:593–602
    [Google Scholar]
  15. Koliais S., Bjursell G., Adams A., Lindahl T., Klein G. 1978; State of Epstein-Barr virus DNA in an American Burkitt lymphoma line. Journal of National Cancer Institute 60:991–994
    [Google Scholar]
  16. Lee L. F., Nazerian K., Leinbach S. S., Reno J. M., Boezi J. A. 1976; Effect of phosphonoacetate on Marek’s disease virus replication. Journal of National Cancer Institute 56:823–827
    [Google Scholar]
  17. Lang D., Mitani M. 1970; Simplified quantitative electron microscopy of biopolymers. Biopolymers 9:373–379
    [Google Scholar]
  18. Lindahl T., Adams A., Bjursell G., Bornkamm G. W., Kaschka-Dierich C., Jehn U. 1976; Covalently closed circular duplex DNA of Epstein-Barr virus in a human lymphoid cell line. Journal of Molecular Biology 102:511–530
    [Google Scholar]
  19. Lindahl T., Adams A., Andersson-Anvret M., Falk L. 1978; Integration of Epstein-Barr virus DNA. In Oncogenesis and Herpes-viruses III pp 113–123 Edited by Rapp I., de Thé I. Lyon: IARC Scientific Publications;
    [Google Scholar]
  20. Mao J. G.-H., Robishaw E. E., Overby L. R. 1975; Inhibition of DNA polymerase from herpes simplex virus-infected WI-38 cells by phosphonoacetic acid. Journal of Virology 15:1281–1283
    [Google Scholar]
  21. Miller G., Shope T., Lisco H., Stitt D., Lipman M. 1972; Epstein-Barr virus: transformation, cytopathic changes, and viral antigens in squirrel monkey and marmoset leukocytes. Proceedings of the National Academy of Sciences of the United States of America 69:383–387
    [Google Scholar]
  22. Nonoyama M., Pagano J. S. 1971; Detection of Epstein-Barr viral genome in nonproductive cells. Nature New Biology 233:103–106
    [Google Scholar]
  23. Nyormoi O., Thorley-Lawson D. A., Elkington J., Strominger J. 1976; Differential effect of phosphono-acetic acid on the expression of Epstein-Barr viral antigens and virus production. Proceedings of the National Academy of Sciences of the United States of America 73:1745–1748
    [Google Scholar]
  24. Pritchett R. F., Hayward S. D., Kieff E. D. 1975; DNA of Epstein-Barr virus. 1. Comparative studies of the DNA of Epstein-Barr virus from HR-1 and B95-8 cells: size, structure, and relatedness. Journal of Virology 15:556–569
    [Google Scholar]
  25. Pritchett R., Pedersen M., Kieff E. 1976; Complexity of EBV homologous DNA in continuous lympho-blastoid cell lines. Virology 74:227–231
    [Google Scholar]
  26. Rymo L., Forsblom S. 1978; Cleavage of Epstein-Barr virus DNA by restriction of endonucleases Eco RI, HindIII, and Bam I. Nucleic Acids Research 5:1387–1402
    [Google Scholar]
  27. Summers W. C., Klein G. 1976; Inhibition of Epstein-Barr virus DNA synthesis and late gene expression by phosphonoacetic acid. Journal of Virology 18:151–155
    [Google Scholar]
  28. Tanaka A., Nonoyama M., Hampar B. 1976; Partial elimination of latent Epstein-Barr virus genomes from virus-producing cells by cyclohexamide. Virology 70:164–170
    [Google Scholar]
  29. Yajima Y., Tanaka A., Nonoyama M. 1976; Inhibition of productive replication of Epstein-Barr virus DNA by phosphonoacetic acid. Virology 71:352–354
    [Google Scholar]
  30. Zur Hausen H., Diehl V., Wolf H., Schulte-Holthausen H., Schneider U. 1972; Occurrence of Epstein-Barr virus genomes in human lymphoblastoid cell lines. Nature New Biology 237:189–190
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-45-2-331
Loading
/content/journal/jgv/10.1099/0022-1317-45-2-331
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error