The morphogenesis of nuclear inclusions and virus capsids in human embryonic lung cells infected with mutants of human cytomegalovirus at permissive (34 °C) and non-permissive (39 °C) temperatures was studied by indirect immunofluorescence (IF) and electron microscopic analyses and compared with the morphogenesis of these structures in wild-type virus infection with or without phosphonoacetate. Mutants tested belonged to five different complementation groups: two groups were DNA (those unable to synthesize virus DNA at 39 °C) and the others were DNA. Based on the previous finding that the electron-dense, reticular nuclear inclusions (EM-NI) observed by the thin-section analysis correspond with nuclear inclusions (IF-NI) detected by the indirect IF staining (i.e. they occupy the same space in the nucleus), the following conclusions were obtained in mutant infection at 39 °C: (i) the formation of EM-NI, IF-NI and virus capsids requires replication of virus DNA. (ii) The formation of EM-NI is not necessarily accompanied by the formation of IF-NI; EM-NI itself is not IF-positive unless it acquires virus-specific late antigens. (iii) The assembly of virus capsids occurs only in those cells in which EM-NI is formed; however, it can occur without the formation of IF-NI. (iv) Virus capsids assembled are not the major antigens responsible for the fluorescence of nuclear inclusions.


Article metrics loading...

Loading full text...

Full text loading...


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error