1887

Abstract

SUMMARY

Adenovirus type 5 DNA has low infectivity (Graham & van der Eb, 1973) which can be increased by various techniques, one of which is the dimethyl sulphoxide (DMSO) boost (Stow & Wilkie, 1976). In this report, it is shown that DMSO treatment of adenovirus 5 DNA-infected HeLa cells results in a 10-fold increase in plaque formation, and that this can be used to facilitate marker rescue experiments. Double DNA infections were performed by the calcium phosphate method, co-precipitating intact temperature-sensitive mutant DNA with purified wild-type DNA restriction endonuclease fragmens. Analysis of the plaquing ability of these mixtures and any progeny virus has resulted in the assignment of six temperature-sensitive mutations to discrete physical locations on the adenovirus type 5 genome. These locations are discussed with respect to the mutant phenotypes and the transcription-translation products of the appropriate regions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-41-3-573
1978-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/41/3/JV0410030573.html?itemId=/content/journal/jgv/10.1099/0022-1317-41-3-573&mimeType=html&fmt=ahah

References

  1. Chow L. T., Roberts J. M., Lewis J. B., Broker T. R. 1977; A map of cytoplasmic RNA transcripts from lytic adenovirus type 2, determined by electron microscopy of RNA:DNA hybrids. Cell 11:819–836
    [Google Scholar]
  2. Ensinger M. J., Ginsberg H. S. 1972; Selection and preliminary characterisation of temperature sensitive mutants of type 5 adenovirus. Journal of Virology 10:328–339
    [Google Scholar]
  3. Oallimore P. H., Sharp P. A., Sambrook J. 1974; Viral DNA in transformed cells. II. A study of the sequences of adenovirus 2 DNA in nine lines of transformed rat cells using specific fragments of the viral genome. Journal of Molecular Biology 89:49–71
    [Google Scholar]
  4. Graham F. L., van der Eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  5. Graham F. L., Veldhuisen G., Wilkie N. M. 1973; Infectious herpesvirus DNA. Nature New Biology 245:265–266
    [Google Scholar]
  6. Graham F. L., Abrahams P. J., Mulder C., Heijnecker H. L., Warnaar S. O., De Vries F. A., J., Fiers W., van der Eb A. J. 1974; Studies on in vitro transformation by DNA and DNA fragments of human adenoviruses and simian virus 40. Cold Spring Harbor Symposium on Quantitative Biology 39:637–650
    [Google Scholar]
  7. Grodzicker T., Anderson C., Sambrook J., Matthews M. 1977; The physical locations of structural genes in adenovirus DNA. Virology 80:111–126
    [Google Scholar]
  8. Jones N., Shenk T. 1978; Isolation of deletion and substitution mutants of adenovirus type 5. Cell 13:181–188
    [Google Scholar]
  9. Lai C.-J., Nathans D. 1974; Mapping temperature-sensitive mutants of SV40; rescue of mutants by fragments of viral DNA. Virology 60:466–475
    [Google Scholar]
  10. Mautner V., Williams J., Sambrook J., Sharp P. A., &. Grodzicker T. 1975; The location of the genes coding for hexon and fiber proteins in adenovirus DNA. Cell 5:93–99
    [Google Scholar]
  11. Mccutchan J. H., Pagano J. S. 1968; Enhancement of the infectivity of simian virus 40 deoxyribonucleic acid with diethyl-aminoethyl-dextran. Journal of the National Cancer Institute 41:351–357
    [Google Scholar]
  12. Miller L. H., Fried M. 1976; Construction of the genetic map of the polyoma genome. Journal of Virology 18:824–832
    [Google Scholar]
  13. Mulder C., Arrand J. R., Delius H., Keller W., Pettersson U., Roberts R. J., Sharp P. A. 1974; Cleavage maps of DNA from adenovirus types 2 and 5 by restriction endonucleases Eco RI and Hpa I. Cold Spring Harbor Symposium on Quantitative Biology 39:397–400
    [Google Scholar]
  14. Pettersson U., Sambrook J. 1973; The amount of viral DNA in the genome of cells transformed by adenovirus type 2. Journal of Molecular Biology 73:125–130
    [Google Scholar]
  15. Robinson A. J., Younghusband H. B., Bellett A. J. D. 1974; A circular DNA-protein complex from adenoviruses. Virology 56:54–69
    [Google Scholar]
  16. Russell W. C., Williams J. F. 1972; Characterisation of temperature-sensitive mutants of adnovirus type 5-serology. Journal of General Virology 17:265–279
    [Google Scholar]
  17. Russell W. C., Skehel J. J., Williams J. F. 1974; Characterisation of temperature-sensitive mutants of adenovirus type 5 - synthesis of polypeptides in infected cells. Journal of General Virology 24:247–259
    [Google Scholar]
  18. Sambrook J., Williams J. F., Sharp P. A., Grodzicker T. 1975; Physical mapping of temperature sensitive mutations of adenoviruses. Journal of Molecular Biology 97:369–390
    [Google Scholar]
  19. Sharp P. A., Moore C., Haverty J. L. 1976; The infectivity of the adenovirus 5 DNA-protein complex. Virology 75:442–456
    [Google Scholar]
  20. Smith H. O., Willcox K. W. 1970; A restriction enzyme from Haemophilus influenzae I. Purification and general properties. Journal of Molecular Biology 51:379
    [Google Scholar]
  21. Stow N. D., Wilkie N. M. 1976; An improved technique for obtaining enhanced infectivity with herpes simplex virus type 1 DNA. Journal of General Virology 33:447–458
    [Google Scholar]
  22. Sussenbach J. S., Kuijk M. G. 1977; Studies on the mechanism of replication of adenovirus DNA. V. The location of the termini of replication. Virology 77:149–157
    [Google Scholar]
  23. Tarodi B., Metz D. H., Douglas A., Russell W. E. 1977; A study of events in chick cells infected with human adenovirus type 5 and their relationship to the induction of interferon. Journal of General Virology 36:425–436
    [Google Scholar]
  24. Thuring R. W. J., Sanders J. P. M., Borst P. 1957; A freeze-squeeze method for recovering long DNA from agarose gels. Analytical Biochemistry 66:213–220
    [Google Scholar]
  25. Ustacelebi S., Williams J. F. 1972; Temperature sensitive mutants of adenovirus defective in interferon induction at non-permissive temperature. Nature, London 235:52–53
    [Google Scholar]
  26. van der Eb A. J., Mulder C., Graham F. L., Houweling A. 1977; Transformation with specific fragments of adenovirus DNAs. I. Isolation of specific fragments with transforming activity of adenovirus 2 and 5 DNA. Gene 2:115–132
    [Google Scholar]
  27. van der Vliet P. C., Levine A. J., Ensinger M. J., Ginsberg H. S. 1975; Thermolabile DNA binding proteins from cells infected with a temperature sensitive mutant of adenovirus defective in viral DNA synthesis. Journal of Virology 15:348–354
    [Google Scholar]
  28. Wllkie N. M., Ustacelebi S., Williams J. F. 1973; Characterisation of temperature sensitive mutants of adenovirus type 5: nucleic acid synthesis. Virology 51:499–503
    [Google Scholar]
  29. Williams J. F., Gharpure M., Ustacelebi S., Mcdonald S. 1971; Isolation of temperature sensitive mutants of adenovirus type 5. Journal of General Virology 11:95–101
    [Google Scholar]
  30. Williams J. F., Young C. S. H., Austin P. E. 1974; Genetic analysis of human adenovirus type 5 in permissive and non-permissive cells. Cold Spring Harbor Symposium on Quantitative Biology 39:427–438
    [Google Scholar]
  31. Wilson G. A., Young F. E. 1976; Restriction and modification in the Bacillus subtilis genospecies. In Microbiology350–357 Schlessinger D.
    [Google Scholar]
  32. Yoshimori R. M. 1971 Ph.D. Thesis University of California, San Francisco Medical Center, San Francisco, California:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-41-3-573
Loading
/content/journal/jgv/10.1099/0022-1317-41-3-573
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error