1887

Abstract

Summary

Phage 34.13 adsorbs well to strain but does not form plaques on it. The DNA of the phage is severely degraded in strain . Phage which does emerge plates on strain 13 but not on . The phenotype of strain is rm. Restriction by stationary phase organisms is weaker than in early log. phase cells. The acceptor ability of for a - plasmid from strain 13 is less than that of strain 13. Spheroplasts of 13 plate 34.13 DNA with an efficiency of 10. The efficiency on strain spheroplasts is <10. The transduction rate of markers by 34.13 into is only reduced to about 10 of the rate into strain 13. Transductants are non-lysogenic for the phage, are stable and may be retransduced. Small doses of ultraviolet radiation do not increase the transduction rate. This is interpreted to mean that 34.13 transduces strain by integration of the bacterial exogenote, which like 34.13 DNA and possibly strain 13 - DNA, is degraded in strain mutants of strain were isolated on which 34.13 has an e.o.p. of 5 × 10 and into which 34.13 transduces markers at the same rate as into strain 13. Phage 34 mutants plate on strain . A strain -induced host specificity was discovered which must be carried by 34 for it to form plaques on . Strain and its mutants are lysogenic for 13 and produce a phage tail-like bacteriocin but neither of these factors account for the restricting and modifying properties of the strains. Phages 34.13 and 34−1. do not affect one another in mixed infections of strain .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-4-4-593
1969-06-01
2022-01-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/4/4/JV0040040593.html?itemId=/content/journal/jgv/10.1099/0022-1317-4-4-593&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1959 Bacteriophages. New York: Interscience Publishers, Inc;
    [Google Scholar]
  2. Adelberg E. A., Mandel M., Chen G. C. C. 1965; Optimal conditions for mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine in Escherichia coli K12. Biochem. biophys. Res. Commurt 18:788
    [Google Scholar]
  3. Anderson E. S., Felix A. 1952; Variations in Vi-phage II of. Salmonella typhi. Nature, Lond 170:492
    [Google Scholar]
  4. Arber W. 1962; Spécificités biologiques de racidedésoxyribonucleique. Pathologia Microbiol 25:668
    [Google Scholar]
  5. Arber W. 1964; Host specificity of DNA produced by Escherichia coli. III. Effects on transduction mediated by λ dg. Virology 23:173
    [Google Scholar]
  6. Arber W. 1965; Host-controlled modification of bacteriophage. A. Rev. Microbiol 19:365
    [Google Scholar]
  7. Arber W. 1966; Host specificity of DNA produced by Escherichia coli. 9. Host-controlled modification of bacteriophage fd.. J. molec. Biol. 20:483
    [Google Scholar]
  8. Arber W., Dussoix D. 1962; Host specificity of DNA produced by Escherichia coli. I. Host-controlled modification of bacteriophage λ. J. molec. Biol 5:18
    [Google Scholar]
  9. Arber W., Morse M. L. 1965; Host specificity of DNA produced by Escherichia coli. VI. Effects on bacterial conjugation. Genetics, N. Y 51:137
    [Google Scholar]
  10. Arber W., Hattman S., Dussoix D. 1963; On the host-controlled modification of bacteriophage λ. Virology 21:30
    [Google Scholar]
  11. Bannister D., Glover S. W. 1968; Restriction and modification of bacteriophages by R+ strains of Escherichia coli k 12. Biochem. biophys. Res. Commun 30:735
    [Google Scholar]
  12. Benzinger R. 1968; Restriction of infectious bacteriophage fd DNA’s and an assay for in vitro host-controlled restriction and modification. Proc. natn. Acad. Sci. U,. S,. A 59:1294
    [Google Scholar]
  13. Bertani G., Weigle J. J. 1953; Host-controlled variation in bacterial viruses. J. Bad 65:113
    [Google Scholar]
  14. Coetzee H. L., de Klerk H. C., Coetzee J. N., Smit J. A. 1968; Bacteriophage tail-like particles associated with intra-species killing of Proteus vulgaris . J. gen. Virol 2:29
    [Google Scholar]
  15. Coetzee J. N. 1961; Lysogenic conversion in the genus Proteus . Nature, Lond 189:946
    [Google Scholar]
  16. Coetzee J. N. 1963a; Lysogeny in Proteus rettgeri and the host-range of P. rettgeri and P. hauseri bacteriophages. J. gen. Microbiol 31:219
    [Google Scholar]
  17. Coetzee J. N. 1963b; Transduction of swarming in Proteus mirabilis . J. gen. Microbiol 33:1
    [Google Scholar]
  18. Coetzee J. N., Sacks T. G. 1960a; Intrastrain transduction in Proteus mirabilis . Nature, Lond 185:869
    [Google Scholar]
  19. Coetzee J. N., Sacks T. G. 1960b; Transduction of streptomycin resistance in Proteus mirabilis . J. gen. Microbiol 23:445
    [Google Scholar]
  20. Coetzee J. N., Sacks T. G. 1960c; Lysogeny in the genus Proteus. 1. Incidence of lysogenic strains. S. Afr. J. Lab. clin. Med 6:123
    [Google Scholar]
  21. Coetzee J. N., Sacks T. G. 1960d; The late sucrose fermenting property of Proteus mirabilis . S. Afr. J. Lab. clin. Med 6:49
    [Google Scholar]
  22. Coetzee J. N., de Klerk H. C., Smit J. A. 1967; A transducing bacteriophage for Proteus vulgaris . J. gen. Virol 1:561
    [Google Scholar]
  23. Coetzee J. N., Smit J. A., Prozesky O. W. 1966; Properties of Providence and Proteus morganii transducing phages. J. gen. Microbiol 44:167
    [Google Scholar]
  24. Colson C., Glover S. W., Symonds N., Stacey K. A. 1965; The location of the genes for host-controlled modification and restriction in Escherichia coli K-12. Genetics, N,. Y 52:1043
    [Google Scholar]
  25. Davila C., Charles P., Ledoux L. 1965; The chromatography of nucleic acid preparations on DEAE-cellulose paper. I. Fractionation of deoxyribonucleic acid on paper strips or on centrifuged paper pulp. J. Chromat 19:382
    [Google Scholar]
  26. Dienes L. 1946; Reproductive processes in Proteus cultures. Proc. Soc. exp. Biol. Med. N. Y 63:265
    [Google Scholar]
  27. Dienes L. 1947; Further observations on the reproduction of bacilli from large bodies in Proteus cultures. Proc. Soc. exp. Biol. Med. N. Y 66:97
    [Google Scholar]
  28. Dussoix D., Arber W. 1962; Host specificity of DNA produced by Escherichia coli. II. Control over acceptance of DNA from infecting phage. J. molec. Biol 5:37
    [Google Scholar]
  29. Dussoix D., Arber W. 1965; Host specificity of DNA produced by Escherichia coli. IV. Host specificity of infectious DNA from bacteriophage lambda. J. molec. Biol 11:238
    [Google Scholar]
  30. Eskridge R. W., Weinfeld H., Paigen K. 1967; Susceptibility of different coliphage genomes to host-controlled variation. J. Bad 93:835
    [Google Scholar]
  31. Falkow S., Wohlheiter J. A., Citarella R. V., Baron L. S. 1964; Transfer of episomic elements to Proteus. II. Nature of Lad Proteus strains isolated from clinical specimens. J. Bad 88:1598
    [Google Scholar]
  32. Gemski P., Wohlheiter J. A., Baron L. S. 1967; Chromosome transfer between Escherichia coli. HFR strains and Proteus mirabilis . Proc. natn. Acad. Sci. U,. S,. A 58:1461
    [Google Scholar]
  33. Glover S. W., Kerszman G. 1967; The properties of a temperate bacteriophage Wϕ isolated from Escherichia coli strain w. Genet. Res 9:135
    [Google Scholar]
  34. Glover S. W., Schell J., Symonds N., Stacey K. A. 1963; The control of host-induced modification by phage PI. Genet. Res 4:480
    [Google Scholar]
  35. Gottesman M. E., Yarmolinsky M. B. 1968; Integration-negative mutants of bacteriophage lambda. J. molec. Biol 31:487
    [Google Scholar]
  36. Grabow W. O. K., Smit J. A. 1967; Methionine synthesis in Proteus mirabilis . J. gen. Microbiol 46:47
    [Google Scholar]
  37. Hershey A. D., Chase M. 1952; Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. gen. Physiol 36:39
    [Google Scholar]
  38. Hershey A. D., Kalmanson G., Bronfenbrenner J. 1943; Quantitative methods in the study of the phage-antiphage reaction. J. Immunol 46:267
    [Google Scholar]
  39. Holloway B. W. 1965; Variations in restriction and modification of bacteriophage following increase of growth temperature of Pseudomonas aeruginosa . Virology 25:634
    [Google Scholar]
  40. Holloway B. W., Rolfe B. 1964; Host genome control in host-induced modification of Pseudomonas aeruginosa phages. Virology 23:595
    [Google Scholar]
  41. Horiuchi K., Adelberg E. A. 1965; Growth of male-specific bacteriophage in Proteus mirabilis harboring F-genotes derived from Escherichia coli . J. Bad 89:1231
    [Google Scholar]
  42. Jacob F., Wollman E. L. 1958; Genetic and physical determinations of chromosomal segments in Escherichia coli . Symp. Soc. exp. Biol 12:75
    [Google Scholar]
  43. Kellenberger G., Symonds N., Arber W. 1966; Host specificity of DNA produced by Escherichia coli. 8. Its acquisition by phage A and its persistence through consecutive growth cycles. Z. VererbLehr 98:247
    [Google Scholar]
  44. Kerszman G., Glover S. W., Aronovttch J. 1967; The restriction of bacteriophage A in Escherichia coli strain w. J. gen. Virol 1:333
    [Google Scholar]
  45. Lederberg J. 1950; Isolation and characterization of biochemical mutants of bacteria. Meth. med. Res 3:5
    [Google Scholar]
  46. Lederberg S. 1957; Suppression of the multiplication of heterologous bacteriophages in lysogenic bacteria. Virology 3:496
    [Google Scholar]
  47. Lederberg S. 1965; Host-controlled restriction and modification of deoxyribonucleic acid in Escherichia coli . Virology 27:378
    [Google Scholar]
  48. Lederberg E. M., Lederberg J. 1953; Genetic studies of lysogenicity in Escherichia coli . Genetics, N. Y 38:51
    [Google Scholar]
  49. Luria S. E., Human M. L. 1952; A nonheriditary, host-induced variation of bacterial viruses. J. Bad 64:557
    [Google Scholar]
  50. Mandell J. D., Hershey A. D. 1960; A fractionating column for analysis of nucleic acids. Analyt. Biochem 1:66
    [Google Scholar]
  51. Molholt B., Fraser D. 1965; Reversal of the restriction for host-modified T2 and T4 DNA upon conversion of non-permissive Escherichia coli to spheroplasts. Biochem. biophys. Res. Commun 19:571
    [Google Scholar]
  52. Prozesky O. W., de Klerk H. C., Coetzee J. N. 1965; The morphology of Proteus bacteriophages. J. gen. Microbiol 41:29
    [Google Scholar]
  53. Ralston D. J., Krueger A. P. 1952; Phage multiplication on two hosts. Isolation and activity of variants of staphylococcus phage P1. Proc. Soc. exp. Biol. Med 80:217
    [Google Scholar]
  54. Rolfe B., Holloway B. W. 1968; Genetic control of DNA specificity in Pseudomonas aeruginosa . Genet. Res 12:99
    [Google Scholar]
  55. Schell J., Glover S. W. 1966; The effect of various physiological conditions on host-controlled restriction in Escherichia coli K (P1). Genet. Res 7:273
    [Google Scholar]
  56. Sheppard D. E. 1962; Density gradient centrifugation of bacteriophage P22. Virology 17:212
    [Google Scholar]
  57. Takano T., Watanabe T., Fukasawa T. 1968; Mechanism of host-controlled restriction of bacteriophage A by R-factors in Escherichia coli K12. Virology 34:290
    [Google Scholar]
  58. Takebe H. 1968; Role of host-cell reactivation in the enhancement of complete transduction after u.v. irradiation of P22 phage. Biochem. biophys. Res. Commun 31:938
    [Google Scholar]
  59. Thorne C. B. 1962; Transduction in Bacillus subtilis . J. Bad 83:106
    [Google Scholar]
  60. Uetake H., Toyama S., Hagiwara S. 1964; On the mechanism of host-induced modification. Multiplicity activation and thermolabile factor responsible for phage growth restriction. Virology 22:202
    [Google Scholar]
  61. Watanabe T., Okada M. 1964; New type of sex factor-specific bacteriophage of Escherichia coli . J. Bad 87:727
    [Google Scholar]
  62. Watanabe T., Nisheda H., Ogata C., Arai T., Sato S. 1964; Episome-mediated transfer of drug resistance in Enterobacteriaceae. VII. Two types of naturally occurring R factors. J. Bad 88:716
    [Google Scholar]
  63. Watanabe T., Takano T., Arai T., Nishida H., Sato S. 1966; Episome-mediated transfer of drug resistance in Enterobacteriaceae. X. Restriction and modification of phages by fi-R factors. J. Bad 92:477
    [Google Scholar]
  64. Wood W. B. 1966; Host specificity of DNA produced by Escherichia coli; bacterial mutations affecting the restriction and modification of DNA. J. molec. Biol 16:118
    [Google Scholar]
  65. Zinder N. D. 1960; Hybrids of Escherichia and Salmonella . Science, N,. Y 131:813
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-4-4-593
Loading
/content/journal/jgv/10.1099/0022-1317-4-4-593
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error