1887

Abstract

Summary

Infection of a thymineless strain of with either the temperate phage φ3 or its clear plaque mutant φ3c enabled DNA to be formed in the absence of added thymine. Growth of phage φ3c under these conditions was associated with an enhanced rate of DNA synthesis compared with uninfected cultures growing in the presence of thymine; when phage φ3 became a prophage the lysogenized cells synthesized DNA at the same rate as the uninfected bacteria with thymine. The thymine independence of phage-infected bacteria was due to the acquisition of the enzyme thymidylate synthetase absent in the uninfected mutant bacteria. Phage φ3c growth caused a rapid rise in the specific activity of the enzyme after a short lag, and by the time the cells lysed there was approximately ten times more activity than in uninfected wild-type . In thymineless lysogenized with phage φ3 the amount of thymidylate synthetase was the same as in wild-type . Phage DNA was able to transform thymine-requiring to thymine independence, showing that it contained the gene for thymidylate synthetase. Plaque-forming particles could not be separated by density gradient centrifugation from those possessing the thymidylate synthetase gene. This result, together with the failure to get ‘thymineless’ mutants of the phage to regain their ability to promote thymine synthesis, suggested that phage φ3 was a converting phage. However, the results of transformation implied that the phage thymidylate synthetase gene was closely related to that of the recipient cells, and may have originated from the bacterium.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-4-4-489
1969-06-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/4/4/JV0040040489.html?itemId=/content/journal/jgv/10.1099/0022-1317-4-4-489&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1959 Bacteriophages New York: Interscience;
    [Google Scholar]
  2. Anagnostopoulos C., Schneider-Champagne A.-M. 1966; Déterminisme génétique de Pexigence en thymine chez certains mutants de Bacillus subtilis . C. r. hebd. Séanc Acad. Sci., Paris 262:1311
    [Google Scholar]
  3. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis . J. Bact 81:741
    [Google Scholar]
  4. Barner H. D., Cohen S. S. 1959; Virus-induced acquisition of metabolic function. IV. Thymi-dylate synthetase in thymine-requiring Escherichia coli infected by T2 and T 5 bacteriophages. J. biol. Chem 334:2987
    [Google Scholar]
  5. Berns K. I., Thomas C. A. 1965; Isolation of high molecular weight DNA from Hemophilus influenzae . J. molec. Biol 11:476
    [Google Scholar]
  6. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J 62:315
    [Google Scholar]
  7. Campbell A. M. 1962; Episomes. Adv. Genet 11:101
    [Google Scholar]
  8. Cowie D. B., McCarthy B. J. 1963; Homology between bacteriophage A DNA and E. coli DNA. Proc. natn. Acad. Sci. U,. S,. A 50:537
    [Google Scholar]
  9. Davis B. D., Mingioli E. S. 1950; Mutants of Escherichia coli requiring methionine or vitamin B12 . J. Bact 60:17
    [Google Scholar]
  10. Farmer J. L., Rothman F. 1965; Transformable thymine-requiring mutant of Bacillus subtilis . J. Bact 89:262
    [Google Scholar]
  11. Flaks J. G., Cohen S. S. 1959; Virus-induced acquisition of metabolic function. I. Enzymatic formation of 5-hydroxymethyldeoxycytidylate. J. biol. Chem 234:1501
    [Google Scholar]
  12. Haslam E. A., Roscoe D. H., Tucker R. G. 1967; Inhibition of thymidylate synthetase in bacteriophage-infected Bacillus subtilis . Biochim. biophys. Acta 134:312
    [Google Scholar]
  13. Hayes W. 1957; The kinetics of the mating process in E. coli . J. gen. Microbiol 16:97
    [Google Scholar]
  14. Kahan F. M. 1963; Novel enzymes formed by Bacillus subitilis infected with bacteriophage. Fedn. Proc. Fedn. Am. Socs exp. Biol 22:406
    [Google Scholar]
  15. Litt M., Marmur J., Ephrussi-Taylor H., Doty P. 1958; The dependence of pneumococcal transformation on the molecular weight of deoxyribose nucleic acid. Proc. natn. Acad. Sci. U,. S,. A 44:144
    [Google Scholar]
  16. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin reagent. J. biol. Chem 193:265
    [Google Scholar]
  17. Luria S. E., Adams J. N., Ting R. C. 1960; Transduction of lactose-utilizing ability among strains of E. coli and 5. dysenteriae and the properties of the transducing phage particles. Virology 12:348
    [Google Scholar]
  18. Luria S. E., Fraser D. K., Adams J. N., Burrous J. W. 1958; Lysogenization, transduction and genetic recombination in bacteria. Cold Spring Harb. Symp. quant. Biol 23:71
    [Google Scholar]
  19. Mandell J. D., Hershey A. D. 1960; A fractionating column for analysis of nucleic acid. Analyt. Biochem 1:66
    [Google Scholar]
  20. Margoliash E., Novogrodsky A., Schejter A. 1960; Irreversible reactions of 3-amino-1: 2: 4-triazole and related inhibitors with the protein of catalase. Biochem. J 74:339
    [Google Scholar]
  21. Marmur J., Cordes S. 1963; Studies on the complementary strains of bacteriophage DNA. In Informational Macromolecules p 86 Ed. by Vogel H. J., Bryson V., Lampen J. O. New York: Academic Press Inc;
    [Google Scholar]
  22. Marmur J., Seaman E., Levine J. 1963; Interspecific transformation in Bacillus. J. Bact 85:461
    [Google Scholar]
  23. Matsushiro A., Sato K., Kida S. 1964; Characteristics of the transducing elements of bacteriophage ϕ 80. Virology 23:299
    [Google Scholar]
  24. Mitchell P. 1949; A new technique for stirred, aerated cultures. Nature, Lond 164:846
    [Google Scholar]
  25. Robbins P. W., Keller I. M., Wright A. W., Bernstein R. 1965; Enzymatic and kinetic studies on the mechanism of O antigen conversion by bacteriophage ε 15 . J. biol. Chem 240:384
    [Google Scholar]
  26. Roscoe D. H., Tucker R. G. 1966; The biosynthesis of 5-hydroxymethyldeoxyuridylic acid in bacteriophage-infected Bacillus subtilis . Virology 29:157
    [Google Scholar]
  27. Schaeffer P. 1958; Interspecific reactions in bacterial transformation. Symp. Soc. exp. Biol 12:60
    [Google Scholar]
  28. Sneath P. H. A. 1962; Sex factors as episomes. Brit. med. Bull 18:41
    [Google Scholar]
  29. Spizizen J. 1958; Transformation of biochemically deficient strains of Bacillus subtilis by deoxy-ribonucleate. Proc. natn. Acad. Sci. U,. S,. A 44:1072
    [Google Scholar]
  30. Wahba A. J., Friedkin M. 1962; The enzymatic synthesis of thymidylate. I. Early steps in the purification of thymidylate synthetase of Escherichia coli . J. biol. Chem 237:3794
    [Google Scholar]
  31. Weigle J., Meselson M., Paigen K. 1959; Density alterations in the bacteriophage lambda. J. molec. Biol 1:379
    [Google Scholar]
  32. Wilson M. C., Farmer J. L., Rothman F. 1966; Thymidylate synthesis and aminopterin resistance in Bacillus subtilis . J. Bact 92:186
    [Google Scholar]
  33. Wyatt G. R. 1951; The purine and pyrimidine composition of deoxypentose nucleic acids. Biochem. J 48:584
    [Google Scholar]
  34. Young B. G., Fukazawa Y., Hartman P. E. 1964; A P22 bacteriophage mutant defective in antigen conversion. Virology 23:279
    [Google Scholar]
  35. Zamenhof S., Chargaff E. 1951; Separation of deoxypentose and pentose nucleic acids. Nature, Lotid 168:604
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-4-4-489
Loading
/content/journal/jgv/10.1099/0022-1317-4-4-489
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error