1887

Abstract

Summary

Purified vaccinia virus was irradiated by γ-rays under direct-effect conditions. The ability of the irradiated samples to form plaques (infectivity) and to induce viral DNA synthesis was determined. The radiosensitive volume of the viral unit causing infection (1.9 × 10 cm.) is very small compared with the volume of the whole viral DNA (∼ 10%).

The inactivation of the DNA replication function follows a simple exponential law. The radiosensitive volume necessary for the replication of DNA (1.6 × 10 cm.) represents only 8.5% of the DNA necessary for infectivity and 0.85% of the total viral DNA. This indicates existence of a dissociation between two functions of vaccinia virus, the synthesis of viral DNA and infectivity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-4-2-221
1969-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/4/2/JV0040020221.html?itemId=/content/journal/jgv/10.1099/0022-1317-4-2-221&mimeType=html&fmt=ahah

References

  1. Baker S. L. 1935; A quantitative comparison of the effects of the beta rays of radium on the agent of the Rous sarcoma on the bacteriophage, on tetanus toxin and on certain bacteria, antibodies and ferments. Brit. J. exp. Path 16:148
    [Google Scholar]
  2. Basilico C., Di Mayorca G. 1965; Radiation target size of the lytic and the transforming ability of polyoma virus. Proc. natn. Acad. Sci. U.S.A 34:125
    [Google Scholar]
  3. Benjamin T. L. 1965; Relative target sizes for the inactivation of the transforming and reproductive abilities of polyoma virus. Proc. natn. Acad. Sci. U.S.A 54:121
    [Google Scholar]
  4. Burkard G., Braunwald J., Guir J., Brendel A., Kirn A. 1968; Developpement du virus vaccinal sur cellules renales de foetus de veau a temperatures optimale et supra-optimale. II. Etude cinetique de la synthese de l’ADN. viral. Annls Inst. Pasteur, Paris (in the Press)
    [Google Scholar]
  5. Defendi V., Jensen F., Sauer G. 1967 The Molecular Biology of Viruses (ed. Colter and Paran-chych) New York: Academic Press; p 645
    [Google Scholar]
  6. Eckert B., Tisne M. R. 1966; Effet des rayons y sur les acides polyriboadenyliques, polyribo-uridiliques et leurs associations bi et tri filaires. Biochim. biophys. Acta 114:480
    [Google Scholar]
  7. Epstein H. T. 1953; Identification of radiosensitive volume with nucleic acid volume. Nature, Lond 171:394
    [Google Scholar]
  8. Freifelder D. 1965; Mechanism of inactivation of coliphage T 7 by y rays. Proc. natn. Acad. Sci. U.S.A 54:128
    [Google Scholar]
  9. Freifelder D. 1966; DNA strand breakage by X-irradiation. Radiat. Res 29:329
    [Google Scholar]
  10. Friesen J. D., Sankoff D., Siminovitch I. 1963; Radiobiological studies of vaccinia virus. Virology 21:411
    [Google Scholar]
  11. Ginoza W. 1967; The effects of ionizing radiation on viruses. A. Rev. Microbiol 21:340
    [Google Scholar]
  12. Gowen J. W., Lucas A. M. 1939; Reaction of variola vaccine virus to Roentgen rays. Science, N. Y 90:621
    [Google Scholar]
  13. Green A. B. 1904; On the action of radium on microorganisms. Proc. R. Soc B 73:375
    [Google Scholar]
  14. Hoagland C. L., Lavin G. I., Smadel J. E., Rivers T. M. 1940; Constituents of elementary bodies of vaccinia. J. exp. Med 72:139
    [Google Scholar]
  15. Jiminez R., Ohlbaum A. 1966; Inactivation of vaccinia virus by y radiation. Z. Naturf 21:52
    [Google Scholar]
  16. Jordan R. T., Kempfe F. L. 1956; Inactivation of some animal viruses with y radiation from cobalt 60. Proc. Soc. exp. Biol. Med 91:212
    [Google Scholar]
  17. Joklik W. K. 1962; The purification of four strains of pox virus. Virology 18:9
    [Google Scholar]
  18. Kaplan H. S. 1966; DNA strand scission and loss of viability after X-irradiation of normal and sensitized bacterial cells. Proc. natn. Acad. Sci. U.S.A 55:1442
    [Google Scholar]
  19. Latarjet R., Cramer R., Montagnier L. 1967; Inactivation by u.v., X and y radiation of the infecting and transforming capacities of polyoma virus. Virology 33:104
    [Google Scholar]
  20. Lea D. E., Salaman M. H. 1942; The inactivation of vaccinia virus by radiations. Br. J. Exp. Path 23:27
    [Google Scholar]
  21. McCrea J. F. 1960; Ionizing radiation and its effect on animal viruses. Ann. N. Y. Acad. Sci 83:692
    [Google Scholar]
  22. Palacios R., Contreras G., Espejo R., Jimenez R., Ohlbaum A., Toka J. 1963; Compound survival curve of vaccinia virus after y radiation. Biochim. Biophys Acta 68:149
    [Google Scholar]
  23. Pfau C. J., McCrea J. F. 1962; Release of DNA from vaccinia virus by 2-mercaptoethano! and pronase. Nature, Lond 194:894
    [Google Scholar]
  24. Pollard E. C. 1954 Advances in Virus Research vol 11 p 109 (Ed. Smith andLaufer) New York: Academic Press;
    [Google Scholar]
  25. Reslova S., Drobnik J. 1968; Size of DNA molecules in bacteriophage T7 after 32P decay. Biochem. Biophys. Res. Commun 31:119
    [Google Scholar]
  26. Stent G. S. 1963 Molecular Biology of Bacterial Viruses ed. Freeman. San Francisco
    [Google Scholar]
  27. Wilson D. E. 1961; Radiation inactivation of vaccinia virus. Radiat. Res 14:796
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-4-2-221
Loading
/content/journal/jgv/10.1099/0022-1317-4-2-221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error