1887

Abstract

SUMMARY

The base composition of DNA from a minute virus of mice was determined by hydrolysis of P-labelled DNA to give 3′ and 5′ nucleotides. The analyses were consistent only with a single-stranded structure for the virus DNA. This was confirmed by the results of nearest neighbour base sequence analyses. Comparison of minute virus of mice with phage φX 174 and adeno-associated virus type 1 showed a close similarity of minute virus of mice and φX 174 and suggested that all three small DNA virus particles contain not more than 1.7 × 10 daltons of DNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-4-1-37
1969-01-01
2021-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/4/1/JV0040010037.html?itemId=/content/journal/jgv/10.1099/0022-1317-4-1-37&mimeType=html&fmt=ahah

References

  1. Crawford L. V. 1966; A minute virus of mice. Virology 29:605
    [Google Scholar]
  2. Crawford L. V., Crawford E. M. 1963; A comparative study of polyoma and papilloma viruses. Virology 21:258
    [Google Scholar]
  3. Cunningham L., Catlin B. W., de Garilhe M. P. 1956; A deoxyribonuclease of Micrococcus pyogenes . J. Am. chem. Soc 78:4642
    [Google Scholar]
  4. Denhardt D. T. 1966; A membrane-filter technique for the detection of complementary DNA. Biochem. biophys. Res. Comm 23:641
    [Google Scholar]
  5. Freifelder D., Kleinschmidt A. K., Sinsheimer R. L. 1964; Electron microscopy of singlestranded DNA: Circularity of DNA of bacteriophage ϕ X 174. Science, N. Y 146:254
    [Google Scholar]
  6. Guthrie G. D., Sinsheimer R. L. 1963; Observations on the infection of bacterial protoplasts with the DNA of bacteriophage ϕ X 174. Biochim. biophys. Acta 72:290
    [Google Scholar]
  7. Hay J., Subak-Sharpe H. 1968; Analysis of nearest neighbour base frequencies in the RNA of a mammalian virus: EMC. J. gen. Virol 2:469
    [Google Scholar]
  8. Hilmoe R. J. 1960; Purification and properties of spleen phosphodiesterase. J. biol. Chem 235:2117
    [Google Scholar]
  9. Hoffmann-Berling H., Marvin D. A., Dürwald H. 1963; Ein fädiger DNS-Phage (fd) und ein sphärischer RNS-Phage (fr) wirtsspezifisch für männliche Stämme von E. coli. I. Präparation und chemische Eigenschaften von fd und fr. Z. Naturforsch 18b:876
    [Google Scholar]
  10. Josse J., Kaiser A. D., Kornberg A. 1961; Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest neighbor base sequences in deoxyribonucleic acid. J. biol. Chem 236:864
    [Google Scholar]
  11. Kleinschmidt A., Zahn R. K. 1959; über Deoxyribonucleinsäure-Molekeln in Protein-Misch-filmen. Z. Naturforsch 14b:770
    [Google Scholar]
  12. Mayor H. D., Melnick J. L. 1966; Small deoxyribonucleic acid-containing viruses (picodna-virus group). Nature, Lond 210:331
    [Google Scholar]
  13. Meselson M., Stahl F. W., Vinograd J. 1957; Equilibrium sedimentation of macromolecules in density gradients. Proc. natn. Acad. Sci. U.S.A. 43:581
    [Google Scholar]
  14. Morrison J. M., Keir H. M., Subak-Sharpe H., Crawford L. V. 1967; Nearest neighbour base sequence analysis of the deoxyribonucleic acids of a further three mammalian viruses: Simian virus 40, human papilloma virus and adenovirus type 2. J. gen. Virol 1:101
    [Google Scholar]
  15. Parks W. P., Green M., Pina M., Melnick J. L. 1967a; Physicochemical characterization of adeno-associated satellite virus type 4 and its nucleic acid. J. Virol 1:980
    [Google Scholar]
  16. Parks W. P., Melnick J. L., Rongey R., Mayor H. D. 1967b; Physical assay and growth cycle studies of a defective adenosatellite virus. J. Virol 1:171
    [Google Scholar]
  17. Price T. D., Darmstadt R. A., Hinds H. A., Zamenhof S. 1967; Mechanism of synthesis of deoxyribonucleic acid in vivo. The heterogeneity of incorporation of 32P into the deoxyribo-nucleotidyl units in Escherichia coli . J. biol. Chem 242:140
    [Google Scholar]
  18. Rose J. A., Hoggan M. D., Shatkin A. J. 1966; Nucleic acid from an adeno-associated virus: chemical and physical studies. Proc. natn. Acad. Sci., U.S.A. 56:86
    [Google Scholar]
  19. Salivar W. O., Tzagoloff H., Pratt D. 1964; Some physical-chemical and biological properties of the rod-shaped coliphage M 13. Virology 24:359
    [Google Scholar]
  20. Sinsheimer R. L. 1959a; A single stranded deoxyribonucleic acid from bacteriophage ϕ X 174. J. molec. Biol 1:43
    [Google Scholar]
  21. Sinsheimer R. L. 1959b; Purification and properties of bacteriophage ϕ X 174. J. molec. Biol 1:37
    [Google Scholar]
  22. Sinsheimer R. L. 1966; ϕ X 174 DNA. In Procedures in Nucleic Acid Research p. 569 Ed Cantoni G. L. and Davies D. R. New York: Harper and Row;
    [Google Scholar]
  23. Subak-Sharpe H., Burk R. R., Crawford L. V., Morrison J. M., Hay J., Keir H. M. 1966; An approach to evolutionary relationships of mammalian DNA viruses through analysis of the pattern of nearest neighbour base sequences. Cold Spring Harb. Symp. quant. Biol 31:737
    [Google Scholar]
  24. Swartz M. N., Trautner T. A., Kornberg A. 1962; Enzymatic synthesis of deoxyribonucleic acid. XI. Further studies on nearest neighbor base sequences in deoxyribonucleic acids. J. biol. Chem 237:1961
    [Google Scholar]
  25. Vinograd J., Bruner R., Kent R., Weigle J. 1963; Band-centrifugation of macromolecules and viruses in self-generating density gradients. Proc. natn. Acad. Sci. U.S.A 49:902
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-4-1-37
Loading
/content/journal/jgv/10.1099/0022-1317-4-1-37
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error