1887

Abstract

Summary

A spectroscopic characterization is given of the isometric RNA-containing chicory yellow mottle virus. The circular dichroism of the virus is close to the sum of that of the native RNA and protein components. The nucleic acid structure is formed by regions of single-chain stacked-base helices similar to that of poly(A) at neutral pH, and short double-helical loops, while the conformation of the capsid is largely accounted for by regions of β-form and random-chain structures.

The heat-induced dissociation of virus nucleoprotein occurs concomitantly with destabilization of the orderly structures of the protein moiety, indicating that only minor interactions between RNA and protein occur. It is suggested that interactions between RNA and protein could involve some aromatic residues of the capsid and the heterocyclic bases of the nucleic acid.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-37-2-359
1977-11-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/37/2/JV0370020359.html?itemId=/content/journal/jgv/10.1099/0022-1317-37-2-359&mimeType=html&fmt=ahah

References

  1. Adams A., Undahl T., Fresco J. R. 1967; Conformational differences between the biologically active and inactive forms of a transfer ribonucleic acid. Proceedings of the National Academy of Sciences of the United States of America 57:1684–1691
    [Google Scholar]
  2. Bach D., Miller I. R. 1966; Interaction of deoxyribonucleic acid with poly-4-vinylpyridine. Biochimica et Biophysica Acta 114:311–325
    [Google Scholar]
  3. Brahms J., Michelson A. M., van Holde K. E. 1966; Adenylate oligomers in single- and double-strand conformation. Journal of Molecular Biology 15:467–488
    [Google Scholar]
  4. Cheng P. 1968; Optical rotatory dispersion, tryptophan location, and base distribution in tobacco mosaic virus. Biochemistry 7:3367–3373
    [Google Scholar]
  5. Fasman G. D., Lindblow C., Grossman L. 1964; The helical conformations of polycytidylic acid: studies on the forces involved. Biochemistry 3:1015–1021
    [Google Scholar]
  6. Gratzer W. B., Richards E. G. 1971; Evaluation of RNA conformation from circular dichroism and optical rotatory dispersion data. Biopolymers 10:2607–2614
    [Google Scholar]
  7. Hashizume H., Imahori K. 1967; Circular dichroism and conformation of natural and synthetic. Journal of Biochemistry (Tokyo) 61:738–749
    [Google Scholar]
  8. Helene C., Dimicoli J. L. 1972; Interaction of oligopeptides containing aromatic aminoacids with nucleic acids. Fluorescence and proton magnetic resonance studies. Federation of European Biochemical Societies Letters 26:6–10
    [Google Scholar]
  9. Incardona N. L., Mckee S., Flanegan J. B. 1973; Noncovalent interactions in viruses: characterization of their role in the pH and thermally induced conformational changes in bromegrass mosaic virus. Virology 53:204–214
    [Google Scholar]
  10. Isenberg H., Cotter R. I., Gratzer W. B. 1971; Secondary structure and interaction of RNA and protein in a bacteriophage. Biochimica et Biophysica Acta 232:184–91
    [Google Scholar]
  11. Johnson W. C., Tinoco I. 1969; Circular dichroism of polynucleotides: a single theory. Biopolymers 7:727–749
    [Google Scholar]
  12. Kaper J. M. 1973; Arrangement and identification of simple isometric viruses according to their dominating stabilizing interactions. Virology 55:299–304
    [Google Scholar]
  13. Kaper J. M. 1975 In The chemical basis of virus structure, dissociation and reassembly. Amsterdam, Oxford New York: North-Holland/American Elsevier;
    [Google Scholar]
  14. Leng M., Felsenfeld G. 1966; A study of polyadenylic acid at neutral pH. Journal of Molecular Biology 15:455–466
    [Google Scholar]
  15. Marushige K., Bonner J. 1966; Template properties of liver chromatin. Journal of Molecular Biology 15:160–174
    [Google Scholar]
  16. Maurizot J. C., Blicharsky J., Brahms J. 1971; Comparaison entre oligoribonucleotides et oligodesoxy-ribonucleotides. I. Formation des doubles helices. Biopolymers 10:1429–1454
    [Google Scholar]
  17. Peggion E., Cosani A., Terbojevich M., Palumbo M. 1977; Conformational studies on synthetic polypeptides. Contribution to the optical activity from sidechain chromophores. ASl-Optically Active Polymers-Seligny (in the press)
    [Google Scholar]
  18. Quacqtjarelli A., Martelli G. P., Vovlas C. 1974; Chicory yellow mottle virus. CMI/AAB Descriptions of Plant Viruses No 132:4 pp
    [Google Scholar]
  19. Quacquarelli A., Piazzolla P., Avgelis A., Gallitelli D. 1977; Production of RNA and artificial top component from parsley carrot-leaf heated in vitro. Journal of General Virology 35:25–35
    [Google Scholar]
  20. Quacquarelli A., Piazzolla P., Vovlas C. 1972a; Freezing in the production of artificial top component of chicory yellow mottle virus. Journal of General Virology 17:147–156
    [Google Scholar]
  21. Quacquarelli A., Vovlas C., Piazzolla P., Russo M., Martelli G. P. 1972b; Characteristics of chicory yellow mottle virus. Phytopathologia Mediterranea 11:180–188
    [Google Scholar]
  22. Samejima T., Hashizume H., Imahori K., Fujii I., Miura K. 1968; Optical rotatory dispersion and circular dichroism of rice dwarf virus ribonucleic acid. Journal of Molecular Biology 34:39–48
    [Google Scholar]
  23. Spackman D. H., Stein W. H., Moore S. 1958; Automatic recording apparatus for use in the chromatography of aminoacids. Analytical Chemistry 30:1190–1206
    [Google Scholar]
  24. Stevens C., Felsenfeld G. 1964; The conversion of two-stranded poly(A+U) to three-stranded poly-(A+2U) and polyA by heat. Biopolymers 2:293–314
    [Google Scholar]
  25. Thomas G. L., Prescott B., Mcdonald-ordzie P. E., Hartman K. A. 1976; Studies of virus structure by Laser-Raman Spectroscopy. II. MS2 phage, MS2 capsids and MS2 RNA in aqueous solutions. Journal of Molecular Biology 102:103–124
    [Google Scholar]
  26. Tinoco L. 1968; The optical properties of polynucleotides. Journal de Chimie Physique 65:91–97
    [Google Scholar]
  27. Usatyi A. F., Shlyakhtenko L. S. 1973; Temperature dependence of CD spectra of DNA from various sources. Biopolymers 12:45–51
    [Google Scholar]
  28. Vovlas C., Martelli G. P., Quacquarelli A. 1971; Le virosi delle piante ortensi in Puglia. VI. II complesso delle maculature anulari della cicoria. Phytopathologia Mediterranea 10:224–254
    [Google Scholar]
  29. Weissman C., Billeter M. A., Goodman H. M., Hindley J., Weber H. 1973; Structure and function of phage RNA. Annual Review of Biochemistry 42:303–328
    [Google Scholar]
  30. Wells B. D., Yang J. T. 1974; A computer probe of the circular dichroic bands of nucleic acids in the ultraviolet region. I. Transfer ribonucleic acid. Biochemistry 13:1311–1316
    [Google Scholar]
  31. Willick G. E., Oikawa K., Kay C. M. 1973; Circular dichroism studies on the conformation of transfer ribonucleic acid in the presence of different divalent cations. Biochemistry 12:899–904
    [Google Scholar]
  32. Yang J. T., Samejima T. 1969; Optical rotatory dispersion and circular dichroism of nucleic acids. Progress in Nucleic Acids Research 9:223–300
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-37-2-359
Loading
/content/journal/jgv/10.1099/0022-1317-37-2-359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error