Thymidine Transport in Herpesvirus hominis Type 1 and 2 Infected BHK 21 Cells Free

Abstract

SUMMARY

Increase of dThd-uptake 4 to 12 h after infection of BHK or primary rabbit kidney cells with of type 1 or 2 can be considered as an early function of the virus genome, because the presence of Cyd-Ara does not prevent the increase of uptake. However, increase of uptake can be prevented by addition of actinomycin D and cycloheximide early in the synthetic cycle.

Two modes of uptake have been differentiated by kinetic analysis: at low substrate concentration dThd is taken up by ‘facilitated transport’, whereas at high substrate concentration (above 2.5 ) simple diffusion takes place. The K of transport of normal BHK or primary rabbit kidney cells (1.4 or 0.5 respectively) is not changed after infection. Only the V increases from 8 to 26.6 pmol in BHK cells or from 2.9 to 9.0 pmol in primary rabbit kidney cells. This indicates that ‘carrier sites’ with identical affinity for dThd-transport are responsible for the increase of transport after infection. This increase of transport is correlated with the induction of a virus coded thymidine kinase (TK) and not with different types of c.p.e. or cellular damage.

Transport of BdUrd increases in a similar manner to that of dThd after infection; transport of dCyd or dUrd increases only slightly, whereas the mechanism of dAdo or Urd uptake by infected cells is quite different.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-35-1-159
1977-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/35/1/JV0350010159.html?itemId=/content/journal/jgv/10.1099/0022-1317-35-1-159&mimeType=html&fmt=ahah

References

  1. Bittlingmaier K., Schneider D., Falke D. 1975; Uptake of (3H)thymidine and cell DNA synthesis during the early multiplication phase of herpesvirus hominis in BHK cells. Biochimica et Biophysica Acta 407:384–391
    [Google Scholar]
  2. Breslow R. E., Goldby R. A. 1969; Isolation and characterization of thymidine transport mutants of Chinese hamster cells. Experimental Cell Research 55:339–346
    [Google Scholar]
  3. Cheng Y., Goz B., Prusoff W. H. 1975; Deoxyribonucleotide metabolism in herpes simplex virus infected HeLa cells. Biochimica et Biophysica Acta 390:253–263
    [Google Scholar]
  4. Dundaroff S., Falke D. 1972; Thymidine-, uridine- and choline-kinase in rabbit kidney cells infected with herpesvirus hominis type 1 and 2. Archiv fur die gesamte Virusforschung 38:56–66
    [Google Scholar]
  5. Everhardt L. P. Jun, Rubin R. W. 1974; Cyclic changes in the cell surface. I. Change in thymidine transport and its inhibition by cytochalasin B in Chinese hamster ovary cells. Journal of Cell Biology 60:434–441
    [Google Scholar]
  6. Falke D. 1965; Untersuchungen iiber die Beziehungen zwischen Riesenzellbildung und Infektiosität von Herpes simplex Viren. Archiv fiir die gesamte Virusforschung 15:387–401
    [Google Scholar]
  7. Falke D. 1967; ~Ca2+, histidin und Zn2+ als Faktoren bei der Riesenzellbildung durch Herpesvirus hominis. Zeitschrift für Medizinische Mikrobiologie und Immunologie 153:176–189
    [Google Scholar]
  8. Falke D., Bitter-Suermann D., Clauss L. 1969; Riesenzellbildung und virusspeziflsche Antigene bei Herpesvirus hominis. Informationsfluϐ von der Elternvirus-DN A. Archiv für die gesamte Virusforschung 27:317–331
    [Google Scholar]
  9. Falke D., Heicke D., Bässler R. 1972; The effect of arabinofuranosyl-cytosine upon synthesis of Herpesvirus hominis. Electron microscopic observations in relation to viral DNA-synthesis. Archiv für die gesamte Virusforschung 39:48–62
    [Google Scholar]
  10. Falke D., Kohlhage H., Niessing K. 1966; Die Wirkung von Actidion auf die Synthese des Herpes simplex Virus in Kulturen verschiedener Zellarten. Zeitschrift für Naturforschung 21:447–453
    [Google Scholar]
  11. Honess R. W., Roizman B. 1974; Regulation of Herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. Journal of Virology 16:8–19
    [Google Scholar]
  12. Hopwood L. E., Dewey W. C., Hejuy W. 1975; Transport of dT during cell cycle in mitotically synchronized CHO cells. Experimental Cell Research 96:425–427
    [Google Scholar]
  13. Jamieson A. T., Bjursell G. 1976; Deoxyribonucleoside triphosphate pools in cells infected with deoxypyrimidine kinaseless Herpes simplex virus. Journal of General Virology 31:115–123
    [Google Scholar]
  14. Just L., Dundaroff S., Falke D., Wolf H. U. 1975; Regulation by thymidine monophosphate and other nucleotides of thymidine kinase activity in extracts from primary rabbit kidney cells infected by HSV types 1 and 2. Journal of General Virology 29:69–80
    [Google Scholar]
  15. Kaplan A. S., Ben-Porat T. 1963; The pattern of viral and cellular DNA-synthesis in pseudorabies infected cells in the log-phase of growth. Virology 19:205–216
    [Google Scholar]
  16. Kaplan A. S., Ben-Porat T., Coto C. 1967; Studies on the control of the infective process in cells infected with pseudorabies virus. In The Molecular Biology of Viruses pp. 527–545 New York: Academic Press;
    [Google Scholar]
  17. Kaplan A. S., Erickson J. S., Ben-Porat T. 1975; Excretion of specific glycoproteins by cells infected with Herpes simplex virus, types I and 2. Progress on Medical Virology 21:1–12
    [Google Scholar]
  18. Lowry O. H., Rosebrough N. G., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  19. Müller W. E. G., Zahn R. K., Bittlingmaier K., Falke D. 1976; The inhibition of herpes specific DNA-polymerase by 9-β-d-arabinofuranosyl adenosin-5′-triphosphate. Third Conference on Antiviral Substances, The New York Academy of Sciences2–5 February (in the press)
    [Google Scholar]
  20. Newton A. A., Dendy P. P., Smith C. L., Wildy P. 1962; A pool size problem associated with the use of tritiated thymidine. Nature, London 194:886–887
    [Google Scholar]
  21. Plagemann P. G. W. 1972; Nucleotide pools in Novikoff rat hepatoma cells growing in suspension culture. III. Effects of nucleosides in medium on levels of nucleotides in separate nucleoside pools for nuclear and cytoplasmatic RNA synthesis. Journal of Cell Biology 52:131
    [Google Scholar]
  22. Plagemann P. G. W., Erbe J. 1972; Thymidine transport by cultures Novikoff hepatoma cells and uptake by simple diffusion and relationship to incorporation into deoxyribonucleic acid. Journal of Cell Biology 55:161–178
    [Google Scholar]
  23. Plagemann P. G. W., Richey D. P. 1974; Transport of nucleosides, nucleic acid bases and glucose by animal cells in culture. Biochimica et Biophysica Acta 344:263–305
    [Google Scholar]
  24. Roane P. R., Roizman B. 1964; Studies of the determinant antigenic reactivity of HEp 2 cells infected with herpes simplex virus. Virology 22:1–8
    [Google Scholar]
  25. Roller B. A., Hirai K., Defendi V. 1974; Effect of cAMP on nucleoside metabolism. II. Cell cycle dependence of thymidine-transport. Journal of Cellular Physiology 84:333–342
    [Google Scholar]
  26. Salzmann N. P. 1961; Animal cell cultures. Science 133:1559–1565
    [Google Scholar]
  27. Schuster G. S., Hare J. D. 1970; Some characteristics of an inhibitable thymidine uptake system in mammalian cells. Experimental Cell Research 59:163–167
    [Google Scholar]
  28. Schuster G. S., Hare J. D. 1971; The role of phosphorylation in the uptake of thymidine in mammalian cells. In Vitro 6:427–436
    [Google Scholar]
  29. Tevethia S. S., Lowry S., Rawls W. E., Melnick J. L., Macmillan V. 1972; Detection of early cell surface changes in herpes simplex virus infected cells by agglutination with concanavalin A. Journal of General Virology 15:93–97
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-35-1-159
Loading
/content/journal/jgv/10.1099/0022-1317-35-1-159
Loading

Data & Media loading...

Most cited Most Cited RSS feed