1887

Abstract

SUMMARY

DNA extracted from frog virus 3 has a GC mol fraction of about 0.56. The mol. wt. of the DNA is about 100 × 10 (97 × 10 by neutral sucrose gradient sedimentation; 102 × 10 from renaturation kinetics). Analysis by neutral sucrose sedimentation indicated that the DNA exists as a single heteroduplex in the virus particle. Alkaline sucrose gradient sedimentation indicated that single strand alkali labile interruptions probably occur in both strands of the heteroduplex. Renaturation kinetic analysis also indicated that about 7% of the genome contains repeated sequences. Quantitative analyses of DNA—DNA homology showed no sequence homology between frog virus 3 DNA and the DNA extracted from iridescent virus types 2, 6 or 9. This lack of sequence homology reflects the markedly distinct profiles on acrylamide gels of the structural polypeptides of frog virus 3 and the iridescent viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-24-2-339
1974-08-01
2022-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/24/2/JV0240020339.html?itemId=/content/journal/jgv/10.1099/0022-1317-24-2-339&mimeType=html&fmt=ahah

References

  1. Abelson J. N., Thomas C. A. 1966; The anatomy of the T5 bacteriophage DNA molecule. Journal of Molecular Biology 18:262–291
    [Google Scholar]
  2. Britten R. J., Kohne D. E. 1966; Nucleotide sequence repetition in DNA. Carnegie Institution of Washington Year Book 65:78–106
    [Google Scholar]
  3. Britten R. J., Kohne D. E. 1968; Repeated sequences in DNA. Science, New York 161:529–540
    [Google Scholar]
  4. Burgi E., Hershey A. D. 1963; Sedimentation rate as a measure of molecular weight of DNA. Biophysical Journal 3:309–321
    [Google Scholar]
  5. Cowie D. B., Avery R. J., Champe S. P. 1971; DNA homology among the T-even bacteriophages. Virology 45:30–37
    [Google Scholar]
  6. Freifelder D. 1970; Molecular weights of coliphages and coliphage DNA. IV. Molecular weights of DNA from bacteriophages T4, T5 and T7 and the general problem of determining M. Journal of Molecular Biology 54:567–577
    [Google Scholar]
  7. Frenkel N., Roizman B. 1971; Herpes simplex virus: genome size and redundancy studied by renaturation kinetics. Journal of Virology 8:591–593
    [Google Scholar]
  8. Frenkel N., Roizman B. 1972; Separation of Herpesvirus deoxyribonucleic acid into unique fragments and intact strand on sedimentation in alkaline gradients. Journal of Virology 10:565–572
    [Google Scholar]
  9. Granoff A. 1969; Viruses of Amphibia. Current Topics in Microbiology and Immunology 50:107–137
    [Google Scholar]
  10. Hours G. E., Gravell M., Darlington R. W. 1970; The base composition and molecular weight of DNA from a frog polyhedral cytoplasmic deoxyribovirus. Proceedings of the Society for Experimental Biology and Medicine 135:232–236
    [Google Scholar]
  11. Kang K. S., Mcauslan B. R. 1972; Virus associated nucleases: Location and properties of dexoyribonucleases and ribonucleases in purified frog virus 3. Journal of Virology 10:202–209
    [Google Scholar]
  12. Kelly D. C., Avery R. J. 1974; The DNA content of four small iridescent viruses: genome size, redundancy, and homology determined by renaturation kinetics. Virology 57:425–435
    [Google Scholar]
  13. Kelly D. C., Cooper V., Walkey D. G. A. 1974; Cauliflower mosaic virus structural proteins. Microbios (in the press)
    [Google Scholar]
  14. Kelly D. C., Dimmock N. J. 1974; Fowl plague virus replication inmammalian cell - avian erythrocyte heterokaryons: studies concerning the actinomycin D and ultra-violet light sensitive phase in influenza virus replication. Virology (in the press)
    [Google Scholar]
  15. Kelly D. C., Robertson J. S. 1973; Icosahedral cytoplasmic deoxyriboviruses. Journal of General Virology 20:17–41
    [Google Scholar]
  16. Kelly D. C., Tinsley T. W. 1972; The proteins of iridescent virus types 2 and 6. Journal of Invertebrate Pathology 19:273–275
    [Google Scholar]
  17. Kelly D. C., Tinsley T. W. 1974; Iridescent virus replication: a microscope study of Aedes aegypti and Antherea eucalypti cells in culture infected with iridescent virus types 2 and 6. Microbios 9:75–93
    [Google Scholar]
  18. Kelly D. C., Vance D. E. 1973; The lipid content of two iridescent viruses. Journal of General Virology 21:417–423
    [Google Scholar]
  19. Kieff E. D., BachEnheimer S. L., Roizman B. 1971; Size, composition, and structure of the deoxyribonucleic acid of Herpes simplex virus subtypes i and z. Journal of Virology 8:125–132
    [Google Scholar]
  20. Kucera L. S. 1970; Effects of temperature of frog polyhedral cytoplasmic deoxyribovirus multiplication: thermosensitivity of initiation, replication, and encapsidation of viral DNA. Virology 42:567–589
    [Google Scholar]
  21. Lee L. F., Kieff E. D., Bachenheimer S. L., Roizman B., Spear P. G., Burmester B. R., Nazerian K. 1971; Size and composition of Marek’s disease virus deoxyribonucleic acid. Journal of Virology 7:289–294
    [Google Scholar]
  22. Mandel M., Igambi L., BergEndahl J., Didson I.I., Schlegten E. 1970; Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. Journal of Bacteriology 101:333–338
    [Google Scholar]
  23. Mcauslan B. R., Smith W. R. 1968; Deoxyribonucleic acid synthesis in FV 3 infected mammalian cells. Journal of Virology 2:1006–1015
    [Google Scholar]
  24. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5:109–118
    [Google Scholar]
  25. Mosmann T. R., Hudson J. B. 1973; Some properties of the genome of murine cytomegalovirus (MCV). Virology 54:135–149
    [Google Scholar]
  26. Palese P., McAuslan B. R. 1972; Virus associated DNase; endonuclease activity in a polyhedral cytoplasmic deoxyribovirus. Virology 49:319–321
    [Google Scholar]
  27. Schildkraut C. L., Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. Journal of Molecular Biology 4:430–443
    [Google Scholar]
  28. Smith W. R., McAuslan B. R. 1969; Biophysical properties of frog virus 3 and its deoxyribonucleic acid: Fate of radioactive virus early in infection. Journal of Virology 4:332–347
    [Google Scholar]
  29. Studier F. W. 1965; Sedimentation studies of the size and shape of DNA. Journal of Molecular Biology n:373–390
    [Google Scholar]
  30. Tan K. B., McAuslan B. R. 1971; Proteins of cytoplasmic deoxyriboviruses. I. The structural polypeptides of frog virus 3. Virology 45:200–207
    [Google Scholar]
  31. Tinsley T. W., Kelly D. C. 1970; An interim nomenclature scheme for the iridescent group of insect viruses. Journal of Invertebrate Pathology 16:470–473
    [Google Scholar]
  32. Tripier F., Kirn A. 1973; Mise en evidence de l’ultrastructure du FV 3 (frog virus 3). Annales de Vinstitut Pasteur 124 A:155–168
    [Google Scholar]
  33. Wetmur J. G., Davidson N. 1968; Kinetics of renaturation of DNA. Journal of Molecular Biology 31:349–370
    [Google Scholar]
  34. Wildy P. 1971; Classification and nomenclature of viruses. Monographs in Virology 5:1–81
    [Google Scholar]
  35. Wilkie N. M. 1973; The synthesis and substructure of Herpesvirus DNA: the distribution of alkali labile single strand interruptions in HSV-1 DNA. Journal of General Virology 21:453–468
    [Google Scholar]
  36. Wrigley N. G. 1969; An electron microscopic study of the structure of Sericesthis iridescent virus. Journal of General Virology 5:123–134
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-24-2-339
Loading
/content/journal/jgv/10.1099/0022-1317-24-2-339
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error