1887

Abstract

The parvoviruses provide considerable uinterest because of their small size and possesion of single-strandede linear DNA. Tese viruses appear to have an affirnity for tissue cell lines wbhere they are usually present as inappare nt infections. The require rapidly growing cells for maximum replication to occur. Present knowledge indicates that mammals and insects are the only hosts, but it would be worth while to look at cell systems derived from other vertebrates, e.g. fish and reptiles, and also in the rapidly growing number of invertebrate cell lines. In this connexion the technique of extracting the cell monolayers with an alkaline barate or glycine buffer at pH 9.0 (Hallauer & Kronauer, 1960) could be invaluable. This method allows the liberation of cell-associatred viruses without damage to the extracted cells, and so they can be treated at frequent intervals during the growth cycle. This is particularly important with parvoviruses as they shoe alternating cycles of high and low concentrating of virus (Hallauer & Kronauer, 1962).

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-20-Supplement-7
1973-06-01
2022-09-30
Loading full text...

Full text loading...

/deliver/fulltext/jgv/20/Supplemen/JV02000S0007.html?itemId=/content/journal/jgv/10.1099/0022-1317-20-Supplement-7&mimeType=html&fmt=ahah

References

  1. Andrewes C. H. 1970; Generic names of viruses of vertebrates. Virology 40:1070–1071
    [Google Scholar]
  2. Bachmann P. A. 1969; Vorkommen und Verbreitung von Picodna-(Parvo) Virus beim Schwein. Zentral-blatt fiir Veterindrmedizin 16:341–345
    [Google Scholar]
  3. Barwise A. H. 1969 Studies on the structure of insect viruses. D.Phil. Thesis University of Oxford.:
    [Google Scholar]
  4. Barwise A. H., Walker I. O. 1970; Studies on the DNA of a virus from Galleria mellonella. FEBS Letters 6:13
    [Google Scholar]
  5. Bernhard W., Kasten F. H., Chang C. 1963; Etude cytochimique et ultrastructurale de cellules infectees par le virus K du rat et le virus H-1. Compte rendu hebdomadaire des seances de I’Academie des sciences, Paris 357:1566–1569
    [Google Scholar]
  6. Berns K. L., Adler S. 1972; Separation of two types of adeno-associated virus particles containing complementary polynucleotide chains. Journal of Virology 9:394–396
    [Google Scholar]
  7. Berns K. L., Rose J. A. 1970; Evidence for a single-stranded AAV genome: isolation and separation of complementary single strands. Journal of Virology 5:693–699
    [Google Scholar]
  8. Burger D., Gorham J. R., Ott R. L. 1963; Protection of cats against feline panleukopenia following mink virus enteritis vaccination. Small Animal Clinician 3:611–614
    [Google Scholar]
  9. Cartwright S. F., Lucas M., Huck R. A. 1969; A small hemagglutinating porcine DNA virus. Journal of Comparative Pathology 79:371–379
    [Google Scholar]
  10. Cheong L., Fogh J., Barclay R. K. 1965; Some properties of the H-i virus and its nucleic acid. Federation Proceedings Abstracts 24:596 No. 2570
    [Google Scholar]
  11. Crawford L. V., Follett E. A. C., Burdon M. G., Mcgeoch D. J. 1969; The DNA of a minute virus of mice. Journal of General Virology 4:37–46
    [Google Scholar]
  12. El Dadah A. H., Nathanson N., Smith K. O., Squire R. A., Santos G. W., Melby C. C. 1967; Hemorrhagic encephalopathy of rats. Science, New York 156:392–394
    [Google Scholar]
  13. Gorham J. R., Hartsough G. R., Sato N., Lust S. 1966; Studies on cell culture adapted feline panleukopenia virus. Veterinary Medicine 61:35–40
    [Google Scholar]
  14. Hallauer C., Kronauer G. 1960; Nachweis von Gelbfiebervirus-Haemagglutinin in menschlichen Ex-plantaten. Archiv fiir die gesamte Virusforschung 10:267–286
    [Google Scholar]
  15. Hallauer C., Kronauer G. 1962; Nachweis eines nicht identifizierten Haemagglutinins in menschlichen Tumorzellstammen. Archiv fiir die gesamte Virusforschung n:754–756
    [Google Scholar]
  16. Hallauer C., Kronauer G., Siegl G. 1971a; Parvoviruses as contaminants of permanent human cell lines. I. Virus isolations from 1960–1970. Archiv fiir die gesamte Virusforschung 35:80–90
    [Google Scholar]
  17. Hallauer C., Novak A., Kronauer G. 1971b; Parvoviruses as contaminants of permanent human cell lines. II. Physicochemical properties of the isolated viruses. Archiv fiir die gesamte Virusforschung 35:91–103
    [Google Scholar]
  18. Hallauer C., Siegl G., Kronauer G. 1972; Parvovirus as contaminants of permanent human cell lines.III. Biological properties of the isolated viruses. Archiv fiir die gesamte Virusforschung 38:366–382
    [Google Scholar]
  19. Hampton E. G. 1964; Viral antigen in rat embryo in culture infected with the H-i virus isolated from transplantable human tumours: cytochemical studies. Cancer Research 24:1534–1543
    [Google Scholar]
  20. Hoggan M. D. 1971; Small DNA viruses. In Comparative Virology chap. 2. Edited by Maramorosch K., Kurstak. E. New York: Academic Press;
    [Google Scholar]
  21. Hosaka Y. 1965; A criterion for evaluating the number of capsomeres of icosabedral capsids. Biochimica and biophysica acta 104:261–273
    [Google Scholar]
  22. Johnson F. B., Ozer H. L., Hoggan M. D. 1971; Structural proteins of adenovirus-associated virus, Type 3. Journal of Virology 8:860–863
    [Google Scholar]
  23. Karasaki S. 1966; Size and ultrastructure of the H-viruses as determined with the specific antibodies. Journal of Ultrastructure Research 16109–122
    [Google Scholar]
  24. Kilham L., Olivier L. J. 1959; A latent virus of rats isolated in tissue culture. Virology 7:428–437
    [Google Scholar]
  25. Kurstak E., Belloncik S., Brailovsky C. 1969; Transformation de cellules de souris par un virus d’invertebres: le virus de la densonucleose (VDN). Compte rendu hebdomadaire des seances de I’Academie des sciences, Paris 269:1716–1719
    [Google Scholar]
  26. Kurstak E., Cote J. R. 1969; Proposition de classification du virus de la densonucleose basee sur l’etude de la structure moleculaire et des proprietes physicochimiques. Compte rendu hebdomadaire des seances de I’Academie des sciences, Paris 268:616–619
    [Google Scholar]
  27. Kurstak E., Vednoux J. P., Niveleau A., Onji P. A. 1971; Visualisation du DNA du virus de la densonucleose (VDN) a chaines monocatenaires complementaires inverses plus ou moins. Compte rendu hebdomadaire des seances de VAcademie des sciences, Paris 272:762
    [Google Scholar]
  28. Macleod R., Longworth J. F., Tinsley T. W. 1971; The parvoviruses of Galleria mellonella (Linn) and Junonia coenia (Huber). IVth Annual Meeting, Society Invertebrate Pathology, Montpellier, France1971
    [Google Scholar]
  29. Mayor H. D., Jordan L., Ito M. 1969a; DNA of adeno-associated satellite virus. Journal of Virology 4:191–194
    [Google Scholar]
  30. Mayor H. D., Melnick J. L. 1966; Small DNA-containing viruses (Picodnavirus Group). Nature, London 310:331–332
    [Google Scholar]
  31. Mayor H. D., Torikai K., Melnick J. L., Mandel M. 1969b; Plus and minus single-stranded DNA separately encapsidated in adeno-associated satellite virions. Science, New York 166:1280–1282
    [Google Scholar]
  32. Payne J. E., Beals T. F., Preston R. E. 1964; Morphology of a small DNA virus. Virology 33:109–113
    [Google Scholar]
  33. Rabson A. S., Kilham L., Kirschstein R. L. 1961; Intranuclear inclusions in Rattus (Mastomys) natalensis injected with rat virus. Journal of the National Cancer Institute 37:1217–1221
    [Google Scholar]
  34. Rivers C. F., Longworth J. F. 1973; A non-occluded virus of Junonia coenia (Nymphalidae: Lepidop-stera). Journal of Invertebrate Pathology (in the press)
    [Google Scholar]
  35. Rose J. A., Berns K. I., Hoggan M. D., Koczot F. J. 1969; Evidence for a single-stranded adenovirus-associated virus genome: formation of a DNA density hybrid on release of viral DNA. Proceedings of the National Academy of Sciences of the United States of America 64:863–869
    [Google Scholar]
  36. Rose J. A., Maizel J. V. Jun., Inman J. K., Shatkin A. J. 1971; Structural proteins of adenovirus-associated viruses. Journal of Virology 8:766–770
    [Google Scholar]
  37. Salzman L. A. 1971; DNA polymerase activity associated with purified Kilham rat virus. Nature New Biology 331:174–176
    [Google Scholar]
  38. Salzman L. A., Jori L. A. 1970; Characterization of the Kilham rat virus. Journal of Virology 5:114–122
    [Google Scholar]
  39. Salzman L. A., White W. L. 1970; The structural proteins of Kilham rat virus. Biochemical and Biophysical Research Communications 41:1551–1556
    [Google Scholar]
  40. Salzman L. A., White W. L., Kakefuda T. 1971; Linear, single-stranded DNA isolated from Kilham rat virus. Journal of Virology 7:830–835
    [Google Scholar]
  41. Sinsheimer R. L. 1959; A single-stranded deoxyribonucleic acid from bacteriophage 0X 174. Journal of Molecular Biology 1:37–42
    [Google Scholar]
  42. Smith K. O., Gehle W. D., Thiel J. F. 1966; Properties of a small virus associated with adenovirus Type 4. Journal of Immunology 97:754–766
    [Google Scholar]
  43. Toolan H. W. 1964; Studies on the H-viruses. Proceedings of the American Association for Cancer Research 5:64
    [Google Scholar]
  44. Toolan H. W. 1968; The picodna viruses H, RV and AAV. International Review of Experimental Pathology 6:135–180
    [Google Scholar]
  45. Torikai K., Ito M., Jordan L. E., Mayor H. D. 1970; Properties of light particles produced during growth of Type 4 adeno-associated satellite virus. Journal of Virology 6:363–369
    [Google Scholar]
  46. Vasquez C., Brailowsky C. 1965; Purification and fine structure of Kilham’s rat virus. Experimental and Molecular Pathology 4:130–140
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-20-Supplement-7
Loading
/content/journal/jgv/10.1099/0022-1317-20-Supplement-7
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error