1887

Abstract

SUMMARY

Extracts of rabies-infected suckling mouse brains purified by precipitation at pH 4·5, freed from smaller antigens by sedimentation at 161, 180g and digested with RNase, DNase and trypsin show in the ultracentrifuge a component of ≈ 16 to 18 which is lacking in extracts of normal suckling mouse brains similarly treated. The largest rabies soluble antigen (‘outer antigen’: Mead, 1962b) has a sedimentation constant ≈ 16 estimated by the ‘biological’ method of Polson & van Regenmortel (1961). The purified antigen appears to consist of rings or possibly single-turn helices about 100 Å in diameter containing about 0·57 g. pentose (as ribose) per g. total nitrogen. The antigen also appears to contain deoxypentose. It is resistant to pancreatic RNase, DNase, trypsin and chymotrypsin, has a density of about 1·34 g./cm. in CsCl and an electrophoretic mobility about 7/8 that of rabbit serum albumin at pH 8·5.

Preparative density-gradient centrifugation in the analytical rotor of the Model E Spinco centrifuge is described. This allows the method to be applied to smaller particles than can be treated in the S.W. 39 rotor.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-2-3-399
1968-05-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/2/3/JV0020030399.html?itemId=/content/journal/jgv/10.1099/0022-1317-2-3-399&mimeType=html&fmt=ahah

References

  1. Barrenscheen H. K., Peham A. 1942; Zur photometrischen Bestimmung der Nucleoside und Nucleotide auf grand der Orcinreaktion. Z. physiol. Chem 272:81
    [Google Scholar]
  2. Barry R. D. 1964; The effects of actinomycin D and ultraviolet irradiation on the production of fowl plague virus. Virology 24:563
    [Google Scholar]
  3. Bettelheim F. R., Neurath H. 1955; The rapid activation of chymotrypsinogen. J. biol. Chem 212:241
    [Google Scholar]
  4. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J 62:315
    [Google Scholar]
  5. Ceriotti G. 1955; Determination of nucleic acids in animal tissues. J. biol. Chem 214:59
    [Google Scholar]
  6. Choppin P. W., Stoeckenius W. 1964; The morphology of SV 5 virus. Virology 23:195
    [Google Scholar]
  7. Commoner B., Shearer G. B., Yamada M. 1962; Linear biosynthesis of tobacco mosaic virus: Changes in rod length during the course of infection. Proc. natn. Acad. Sci. U.S.A 48:1788
    [Google Scholar]
  8. Cruickshank J. G. 1964; The structure of myxoviruses and its biological significance. In Cellular Biology of Myxovirus Infections, p. 5. Ed. by G. E. W. Wolstenholme and J. Knight. London: Churchill;
    [Google Scholar]
  9. Frisch-Niggemeyer W., Hoyle L. 1956; The nucleic acid and carbohydrate content of influenza virus A and of virus fractions produced by ether disintegration. J. Hyg., Camb 54:201
    [Google Scholar]
  10. Gomatos P. J., Tamm I. 1963; The secondary structure of reovirus RNA. Proc. natn. Acad. Sci. U.S.A 49:707
    [Google Scholar]
  11. Gomatos P. J., Krug R. M., Tamm I. 1964; Enzymic synthesis of RNA with reovirus RNA as template. I. Characteristics of the reaction catalyzed by the RNA polymerase from Escherichia coli.. J. molec. Biol 9:193
    [Google Scholar]
  12. Hamilton M. G., Kerr I. M., Work T. S. 1962; Studies on encephalomyocarditis-virus protein. Biochem. J 84:113
    [Google Scholar]
  13. Hirst G. K. 1962; Genetic recombination with Newcastle disease viruses, poliovirus and influenza. Cold Spring Harb. Symp. quant. Biol 27:303
    [Google Scholar]
  14. Hjertén S. 1964; The preparation of agarose spheres for chromotography of molecules and particles. Biochim. biophys. Acta 79:393
    [Google Scholar]
  15. Hoyle L., Horne R. W., Waterson A. P. 1961; The structure and composition of the myxoviruses. II. Components released from the influenza virus particle by ether. Virology 13:448
    [Google Scholar]
  16. Ifft J. B., Voet D. H., Vinograd J. 1961; The determination of density distributions and density gradients in binary solutions at equilibrium in the ultracentrifuge. J. phys. Chem 65:1138
    [Google Scholar]
  17. Jacobs S. 1962; The quantitative determination of nitrogen by a further modification of the indanetrione hydrate method. Analyst 87:53
    [Google Scholar]
  18. Jacobs S. 1964; The effect of temperature on the Kjeldahl digestion process. Analyst 89:489
    [Google Scholar]
  19. Mead T. H. 1962a; Purification of rabies soluble antigens. J. gen. Microbiol 27:397
    [Google Scholar]
  20. Mead T. H. 1962b; Separation of viruses. Br. med. Bull 27:415
    [Google Scholar]
  21. Markham R. 1966; Separation of viruses. Br. med. Bull 22:153
    [Google Scholar]
  22. Mattern C. F. T. 1962; Some physical and chemical properties of Coxsackie viruses A 9 and A 10. Virology 17:520
    [Google Scholar]
  23. Pinteric L., Fenje P., Almeida V. W. 1963; The visualization of rabies virus in mouse brain. Virology 20:208
    [Google Scholar]
  24. Poison A. 1961; Fractionation of protein mixtures on columns of granulated agar. Biochim. biophys. Acta 50:565
    [Google Scholar]
  25. Polson A., Levitt J. 1963; Density determination in a preformed gradient of caesium chloride. Biochim. biophys. Acta 75:88
    [Google Scholar]
  26. Polson A., Linder A. M. 1953; The determination of sedimentation constants of proteins and viruses with the help of the Spinco preparative ultracentrifuge. Biochim. biophys. Acta 11:199
    [Google Scholar]
  27. Polson A., Vanregenmortel M. H. V. 1961; A new method for determination of sedimentation constants of viruses. Virology 15:397
    [Google Scholar]
  28. Ralph R. K., Matthews R. E. F., Matus A. I., Mandel H. G. 1965; Isolation and properties of double stranded viral RNA from virus infected plants. J. molec. Biol 11:202
    [Google Scholar]
  29. Rott R., Schafer W. 1964; The various virus specific units produced by myxovirus-infected cells. Cellular Biology of Myxovirus Infections p 27 Wolstenholme G. W. E., Knight J. Ed. by London: Churchill;
    [Google Scholar]
  30. Rott R., Scholtissek K. C. 1964; Einfluss von Actinomycin auf die Vermehrung von Myxoviren. Z. Naturf 19b:316
    [Google Scholar]
  31. Russell B., Mead T. H., Polson A. 1964; A method of preparing agarose. Biochim. biophys. Acta 86:169
    [Google Scholar]
  32. Schäfer W., Rott R. 1959; Untereinheiten des Newcastle Disease und Mumps-virus. Z. Naturf 14b:629
    [Google Scholar]
  33. Schwerdt C. E., Schaffer F. L. 1955; Some physical and chemical properties of purified poliomyelitis virus preparations. Ann. N. Y. Acad. Sci 61:740
    [Google Scholar]
  34. Tiselius A., Pederson K. O., Svedberg T. 1937; Analytical measurements of ultracentrifugal sedimentation. Nature; Lond: 140848
    [Google Scholar]
  35. Valentine R. C., Isaacs A. 1957a; The structure of influenza virus filaments and spheres. J. gen. Microbiol 16:195
    [Google Scholar]
  36. Valentine R. C., Isaacs A. 1957b; The structure of viruses of the Newcastle disease-mumps-influenza (myxovirus) group. J. gen. Microbiol 16:680
    [Google Scholar]
  37. Villemot J. M., Provost A. 1959; Etude sur l’antigène soluble du virus rabique. Ann. Inst. Pasteur 96:712
    [Google Scholar]
  38. Wang T-Y. 1965; Role of the residual nucleoprotein complex and acidic proteins of the cell nucleus in protein synthesis. Proc. natn. Acad. Sci. U.S.A 54:800
    [Google Scholar]
  39. Wright R. 1919; The effect of some simple electrolytes on the temperature of maximum density of water. Trans. Chem. Soc 115:119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-2-3-399
Loading
/content/journal/jgv/10.1099/0022-1317-2-3-399
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error