- Volume 73, Issue 11, 2023
Volume 73, Issue 11, 2023
- New Taxa
-
- Bacillota
-
-
Elevation of Lentilactobacillus rapi subsp. dabitei Li et al. 2022 to the species level as Lentilactobacillus dabitei sp. nov.
More LessLentilactobacillus rapi subsp. dabitei was proposed by Li et al. in 2022. The type strains of L. rapi subsp. dabitei and L. rapi subsp. rapi shared 93.1 % average nucleotide identity and 52.8 % digital DNA–DNA hybridization values. Strain IMAU80584T was proposed as a novel subspecies of L. rapi rather than a novel species of the genus Lentilactobacillus on the basis of similar phenotypic characteristics (including growth temperature and pH, tolerance to NaCl and features based on API 50CH and API ZYM). However, the phenotypic investigation performed by Li et al. was insufficient because some physiological and biochemical characteristics recommended by Mattarelli et al. were not included. In the present study, the taxonomic relationship between L. rapi subsp. dabitei and L. rapi subsp. rapi was re-evaluated. Based upon the data obtained in the present study, we propose to elevate L. rapi subsp. dabitei to the species level as Lentilactobacillus dabitei sp. nov. The type strain is IMAU80584T (=GDMCC 1.2566T=JCM 34647T).
-
-
-
Tepidibacter hydrothermalis sp. nov., a novel anaerobic bacterium isolated from a deep-sea hydrothermal vent
More LessA novel anaerobic heterotrophic bacterium, designated strain SWIR-1T, was isolated from a deep-sea hydrothermal vent field sample collected from the Southwest Indian Ridge at a depth of 2700 m. Phylogenetic analysis indicated that strain SWIR-1T belongs to the genus Tepidibacter , and the most closely related species are Tepidibacter mesophilus B1T (99.1 % 16S rRNA gene sequence similarity), Tepidibacter formicigenes DV1184T (94.6 %) and Tepidibacter thalassicus SC562T (93.9 %). Strain SWIR-1T shares 77.3–87.2 % average nucleotide identity and 21.5–35.7 % digital DNA–DNA hybridization values with the three type strains of Tepidibacter species. Cells of strain SWIR-1T were Gram-stain-positive, motile, short straight rods. Endospores were observed in stationary-phase cells when grown on Thermococcales rich medium. Strain SWIR-1T grew at 15–45 °C (optimum, 30°C), at pH 5.5–8.0 (optimum, pH 7.0) and with 1.0–6.0 % (w/v) NaCl (optimum, 2.0 %). Substrates utilized by strain SWIR-1T included complex proteinaceous, chitin, starch, lactose, maltose, fructose, galactose, glucose, rhamnose, arabinose, ribose, alanine, glycine and glycerol. The major fermentation products from glucose were acetate, lactate, H2 and CO2. Elemental sulphur, sulphate, thiosulphate, sulphite, fumarate, nitrate, nitrite and FeCl3 are not used as terminal electron acceptors. The main cellular fatty acids consisted of iso-C15 : 0 (28.4 %), C15 : 1 iso F (15.4 %) and C16 : 0 (9.8 %). The major polar lipids were phospholipids and glycolipids. No respiratory quinones were detected. Genomic comparison revealed a distinctive blended gene cluster comprising hyb-tat-hyp genes, which play a crucial role in the synthesis, maturation, activation and export of NiFe-hydrogenase. Based on the phylogenetic analysis, genomic, physiologic and chemotaxonomic characteristics, strain SWIR-1T is considered to represent a novel species within the genus Tepidibacter , for which the name Tepidibacter hydrothermalis sp. nov. is proposed. The type strain is strain SWIR-1T (=DSM 113848T=MCCC 1K07078T)
-
-
-
Tumebacillus lacus sp. nov., isolated from lake water
More LessA Gram-stain-positive, aerobic, rod-shaped, endospore-forming and motile, by means of peritrichous flagella, bacterium, designated DT12T, was isolated from a lake water sample from Datun Lake of Yunnan Province, PR China. The results of phylogenetic analysis based on 16S rRNA gene sequence and the concatenated alignment of 120 ubiquitous single-copy proteins indicated that the novel strain represented a member of the genus Tumebacillus . The sole quinone was menaquinone-7 and the cell-wall peptidoglycan was type-A1γ. The major fatty acids (>10 %) of the novel strain were iso-C15 : 0 and anteiso-C15 : 0, while the major polar lipids were phosphatidylmonomethylethanolamine, phosphatidylethanolamine and phosphatidylglycerol. The results of phylogenetic analyses combined with phylogenetic, phenotypic and chemotaxonomic features, strongly supported the hypothesis that the strain should be classified as representing a novel species of the genus Tumebacillus , for which the name Tumebacillus lacus sp. nov. is proposed. The type strain is DT12T (=KCTC 33958T= MCCC 1H00320T). The genomic analysis revealed that DT12T has various biosynthetic gene clusters for secondary metabolites, and members of the genus Tumebacillus may represent a promising source of new natural products. Our study also showed that members of the genus Tumebacillus are widely distributed in a variety of habitats throughout the globe, particularly in soils, human-, animal- and plant-associated environments. Members of the genus Tumebacillus may have an important role in the growth and health of humans, plants and animals.
-
-
-
Two novel alkalitolerant species Pseudalkalibacillus spartinae sp. nov. and Pseudalkalibacillus sedimenti sp. nov.
In this study, two novel alkalitolerant strains (FJAT-53046T and FJAT-53715T) were isolated from sediment samples collected in Zhangzhou, PR China. Phylogeny based on 16S rRNA gene sequences suggested that strains FJAT-53046T and FJAT-53715T were new members of the genus Pseudalkalibacillus . The two novel strains showed the highest 16S rRNA gene sequence similarity to Pseudalkalibacillus hwajinpoensis DSM 16206T, with values of 97.4 and 97.6 %, respectively. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the two strains and the reference strain were 77.2 and 79.6 %, 20.9 and 30.2 %, respectively, which were below the prokaryotic species delineation thresholds. The ANI and dDDH values between strains FJAT-53046T and FJAT-53715T were 86.0 and 30.2 %, respectively, suggesting that they belonged to different species in the genus Pseudalkalibacillus . The major respiratory quinone in both strains was MK-7 and the major cellular fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0. Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were the major polar lipids in both novel strains. Combined with results stemming from the determination of physical and biochemical characteristics, chemical properties, and genome analysis, strains FJAT-53046T and FJAT-53715T are proposed to represent two novel species of the genus Pseudalkalibacillus , for which the names Pseudalkalibacillus spartinae sp. nov. and Pseudalkalibacillus sedimenti sp. nov. are proposed. The type strains are FJAT-53046T (=GDMCC 1.3077T=JCM 35611T) and FJAT-53715T (=GDMCC 1.3076T=JCM 35610T), respectively.
-
-
-
Ligilactobacillus cholophilus sp. nov., isolated from pickled potherb mustard (Brassica juncea Coss.)
More LessStrain BD7642T was isolated from Chinese pickled potherb mustard (Brassica juncea Coss.) purchased from a local market in Shanghai, PR China. A polyphasic approach, including 16S rRNA gene sequence, housekeeping gene, average nucleotide identity (ANI), digital DNA–DNA hybridization (dDDH), G+C content and phenotypic analyses, was employed to characterize strain BD7642T. Cells of the bacterium were short round rods, Gram-stain-positive, non-spore-forming and catalase-negative. The strain grew at 30–45 °C and pH 4.0–8.0. Optimum growth occurred at 35–40 °C and pH 6.0–7.0. The strain exhibited growth with salt (NaCl) concentrations of up to 5 % (w/v). The G+C content of the strain’s genomic DNA was 31.37 mol%. The major fatty acids were C16 : 0, C18 : 1 c9 and summed feature 10 (C18 : 1 c11/t9/t6). 16S rRNA gene sequencing revealed that strain BD7642T represents a member of the genus Ligilactobacillus and it had high sequence similarity to Ligilactobacillus aviarius NBRC 102162T (96.73 %), Ligilactobacillus araffinosus LGM 23560 (96.66 %) and Ligilactobacillus salivarius JCM 1231T (95.82 %). The dDDH values between strain BD7642T and its phylogenetically related species within the genus Ligilactobacillus ranged from 12.6 to 25.4 %. The ANI values between strain BD7642T and its closely related taxa were far lower than the threshold (95 %–96 %) used for species differentiation. Results of phylogenetic, physiological and phenotypic characterization confirmed that strain BD7642T represents a novel species within the genus Ligilactobacillus , for which the name Ligilactobacillus cholophilus sp. nov. is proposed. The type strain is BD7642T (=CCTCC AB 2022398T=JCM 36074T).
-
-
-
Lysinibacillus irui sp. nov., isolated from Iru, fermented African locust beans
A Gram-positive, motile, aerobic, rod-shaped, endospore-forming strain designated IRB4-01T was isolated from fermented African locust beans (Iru) obtained from Bodija market in the city of Ibadan, southwestern Nigeria, during a screening process from food-related sources. IRB4-01T grew at 10–50 °C (optimum, 35–37 °C), pH 6–10 (optimum, pH 7) and in 0–6 % NaCl (optimum, 1–3 %). Phylogenetic analyses based on 16S rRNA and combined short- and long-read genome sequencing revealed that IRB4-01T is closely related to Lysinibacillus cavernae SYSU K30005T and Lysinibacillus boronitolerans 10aT. The cell-wall peptidoglycan type was A4α (Lys–Asp), containing the diagnostic diamino acid lysine. The major polar lipids in strain IRB4-01T were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid, while the predominant menaquinone was MK-7. The major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0. Genomic DNA G+C content was 37.4 mol%, while the digital DNA–DNA hybridization revealed 33.6 and 32.3 % relatedness to L. cavernae SYSU K30005T and L. boronitolerans 10aT, respectively. Based on phenotypic, physiological and chemotaxonomic characteristics, as well as genome comparisons, strain IRB4-01T represents a novel species of the genus Lysinibacillus , for which the name Lysinibacillus irui sp. nov. is proposed. The type strain is IRB4-01T (NCIMB 15452T=LMG 32887T). Hybrid genome data are provided on the NCBI database using the Bioproject number PRJNA906010 and accession numbers CP113527 and CP113528. Additionally, a representative 16S rRNA sequence is available with the GenBank accession number OQ566940.
-
-
-
Paenibacillus caseinilyticus sp. nov., isolated forest soil
A milky-white-coloured, aerobic, Gram-stain-positive, rod-shaped and motile bacterial strain (GW78T) was isolated from forest soil. GW78T was catalase-positive and oxidase-negative. The strain was able to grow optimally at 37 °C and at pH 7.0 in Reasoner's 2A media. The phylogenetic and 16S rRNA gene sequence analysis of GW78T showed its affiliation with the genus Paenibacillus . The 16S rRNA gene sequence of GW78T revealed 98.3 % similarity to its nearest neighbour Paenibacillus mucilaginosus VKPM B-7519T. Its chemotaxonomic properties included MK-7 as the sole menaquinone, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylmonomethylethanolamine and phosphatidylethanolamine as major polar lipids, and anteiso-C15 : 0, C16 : 1 ω11c and anteiso-C17 : 0 as predominant fatty acids. Digital DNA–DNA hybridization and average nucleotide identity results with its closest relatives were <74.0 % and <14.0 %, respectively. Overall, 16S rRNA gene sequence comparisons, phylogenetic and genomic evidence, and phenotypic and chemotaxonomic data allow the differentiation of GW78T from other members of the genus Paenibacillus . Thus, we propose that strain GW78T represents a novel species of the genus Paenibacillus , with the name Paenibacillus caseinilyticus sp. nov. The type strain is GW78T (=KCTC 43430T=NBRC 116023T).
-
-
-
Psychrobacillus antarcticus sp. nov., a psychrotolerant bioemulsifier producer isolated from King George Island, Antarctica
A Gram-stain-positive rod, psychrotolerant, aerobic and bioemulsifier-producing strain, denoted as Val9T, was isolated from soil sampled at Vale Ulman, King George Island, Antarctica. The strain grew at up to 30 °C (optimum, 15 °C), at pH 6–9 (optimum, pH 8) and with up to 5 % w/v NaCl (optimum, 3 %). The strain was motile and positive for catalase, oxidase and H2S. It did not hydrolyse starch, casein or gelatin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain Val9T belonged to the genus Psychrobacillus and was closely related to Psychrobacillus psychrotolerans DSM 11706T (99.9 % similarity), Psychrobacillus psychrodurans DSM 11713T (99.8 %) and Psychrobacillus glaciei PB01T (99.2 %). Digital DNA–DNA hybridization and average nucleotide identity values were lower than 37.3 and 85.5 %, respectively, with the closest phylogenetic neighbours. The DNA G+C content of strain Val9T calculated from the complete genome sequence was 36.6 mol%. The predominant cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0 and anteiso-C17 : 1ω11c. Menaquinone-8 was the major respiratory quinone. The peptidoglycan type was A4β l-Orn-d-glu. The novel strain contained diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol as predominant polar lipids. Based on 16S rRNA phylogenetic and multilocus sequence analyses (recA, rpoB and gyrB), as well as phylogenomic, chemotaxonomic and phenotypic tests, we demonstrate that strain Val9T represents a novel species of the genus Psychrobacillus , for which the name Psychrobacillus antarcticus sp. nov. is proposed. The type strain is Val9T (=DSM 115096T=CCGB 1952T=NRRL B-65674T).
-
-
-
Paenibacillus polygoni sp. nov., an endophytic bacterium isolated from Polygonum lapathifolium L. in wetland
A Gram-stain-positive, aerobic, rod-shaped, non-motile, yellowish and glossy strain, C31T, was isolated from a wetland plant Polygonum lapathifolium L. located south of Poyang Lake, Jiangxi Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain C31T showed similarity values of lower than 97.0 % to other type species belonging to the genus Paenibacillus . The genomic average nucleotide identity values between strain C31T and its reference type species ranged from 68.9–70.9 % and the digital DNA–DNA hybridization values were lower than 27.8 %. The genomic DNA G+C content of strain C31T was 41.9 mol%. The optimal growth temperature, pH and NaCl concentration were 37 °C, pH 7 and 0.5 %, respectively. The major cellular fatty acids (>5.0 %) of strain C31T were anteiso-C15 : 0 (73.7 %), anteiso-C17 : 0 (8.4 %) and iso-C15 : 0 (5.2 %). The polar lipids of strain C31T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unidentified phospholipids. The respiratory quinone was MK-7. Based on these phylogenetic and phenotypic characterizations, strain C31T represents a novel species within the genus Paenibacillus . Therefore, the proposed name for this newly identified species is Paenibacillus polygoni sp. nov. and the type strain is C31T (=CCTCC AB 2022349T=KCTC 43565T).
-
- Other Bacteria
-
-
Mycoplasma phocimorsus sp. nov., isolated from Scandinavian patients with seal finger or septic arthritis after contact with seals
Seal finger (sealer’s finger, spekk finger), an extremely painful hand infection contracted by individuals handling seals, has previously been associated with Mycoplasma phocacerebrale. From 2000 to 2014, six independent strains of a novel Mycoplasma species were isolated at Statens Serum Institut, Denmark, from Scandinavian patients with seal finger (M5725T, M6447, M6620, M6642 and M6879) or septic arthritis (M6921). Prior to the onset of infection, all patients had reported contact with unspeciated seals. All isolates grew within 2–5 days in Friis’ modified broth and metabolized glucose and arginine but not urea. Strains M5725T, M6447, M6642 and M6921 also grew in Hayflick-type media. Colonies on agar media were large (0.5–1.0 mm) and had a typical ‘fried egg’ appearance, reduced tetrazolium, and were digitonin sensitive. Growth occurred at 32 °C but not at 42 °C. Strains were susceptible to doxycycline and moxifloxacin but resistant to azithromycin and erythromycin. The genomes of the six strains were sequenced and relatedness to all known Mycoplasma species was inferred. Phylogenetic analyses using 16S rRNA gene sequences and core genome single nucleotide polymorphisms showed that the isolated strains were highly similar and phylogenetically distinct from all other species within the genus Mycoplasma. The sizes of the genome sequences of the strains ranged from 744 321 to 772409 bp, with a G+C content of 25.0–25.2 mol%. Based on these analyses, we propose a novel species of the genus Mycoplasma with the name Mycoplasma phocimorsus sp. nov. with the first isolate M5725T (NCTC 14922T=DSM 116188T) as the proposed type strain and representative strains M6447, M6620, M6642, M6879 and M6921.
-
-
-
Marinitoga aeolica sp. nov., a novel thermophilic anaerobic heterotroph isolated from a shallow hydrothermal field of Panarea Island in the Aeolian archipelago, Italy
A novel thermophilic strain, designated BP5-C20AT, was isolated from the shallow hydrothermal field of the Panarea island in the Aeolian archipelago close to Sicily, Italy. Cells are motile rods surrounded with a ‘toga’, Gram-stain-negative and display a straight to curved morphology during the exponential phase. Strain BP5-C20AT is thermophilic (optimum 55 °C), moderately acidophilic (optimum pH 5.6) and halotolerant (optimum 25 g l−1 NaCl). It can use yeast extract, peptone and tryptone. It uses the following carbohydrates: cellobiose, fructose, glucose, maltose, starch, sucrose and xylan. Elemental sulphur is used as an electron acceptor and reduced to hydrogen sulphide. The predominant cellular fatty acid is C16 : 0. Phylogenetic analysis showed that strain BP5-C20AT shared 97.3 % 16S rRNA gene sequence identity with the closest related species Marinitoga lauensis LG1T. The complete genome of strain BP5-C20AT is 2.44 Mb in size with a G+C content of 27.3 mol%. The dDDH and ANI values between the genomes of strains BP5-C20AT and M. lauensis LG1T are 31.0 and 85.70% respectively. Finally, from its physiological, metabolic and genomic characteristics, strain BP5-C20AT (=DSM 112332T=JCM 39183 T) is proposed as representative of a novel species of the genus Marinitoga named Marinitoga aeolica sp. nov. and belonging to the order Petrotogales , in the phylum Thermotogota .
-
- Pseudomonadota
-
-
Helicobacter ibis sp. nov., isolated from faecal droppings of black-faced ibis (Theristicus melanopis)
More LessAs part of a larger study on Epsilonproteobacteria carried by wild birds in the city of Valdivia (southern Chile), two curved rod-shaped Gram-stain-negative strains (A82T and WB-40) were recovered from faecal samples and subjected to a taxonomic study. Results of a genus-specific PCR showed that these isolates belonged to the genus Helicobacter . Further identification by 16S rRNA and hsp60 (60 kDa heat-shock protein) gene sequence analysis revealed that they formed a separate phylogenetic clade, different from other known Helicobacter species with ‘Helicobacter burdigaliensis’ CNRCH 2005/566HT and Helicobacter valdiviensis WBE14T being the most closely related species. This was confirmed by core-genome phylogeny as well as digital DNA–DNA hybridization and average nucleotide identity analyses between the genomes of strains A82T and WB-40 and all other Helicobacter species. The draft genome sequences of A82T and WB-40, obtained by Illumina NextSeq 2000 sequencing, consisted of 1.6 Mb with a G+C content of 31.9–32.0 mol%. The results obtained from the phylogenetic and genomic characterization, together with their different morphological and biochemical features, revealed that these two strains represent a novel species, for which we propose the name Helicobacter ibis sp. nov. with A82T (=LMG 32718T=CCCT 22.04T) as the type strain.
-
-
-
Candidatus Kirkpatrickella diaphorinae gen. nov., sp. nov., an uncultured endosymbiont identified in a population of Diaphorina citri from Hawaii
More LessDiaphorina citri is the hemipteran pest and vector of a devastating bacterial pathogen of citrus worldwide. In addition to the two core bacterial endosymbionts of D. citri, Candidatus Carsonella ruddii and Candidatus Profftella armatura, the genome of a novel endosymbiont and as of yet undescribed microbe was discovered in a Hawaiian D. citri population through deep sequencing of multiple D. citri populations. Found to be closely related to the genus Asaia in the family Acetobacteraceae by 16S rRNA gene sequence analysis, it forms a sister clade along with other insect-associated 16S rRNA gene sequences from uncultured bacterium found associated with Aedes koreicus and Sogatella furcifera. Multilocus sequence analysis confirmed the phylogenetic placement sister to the Asaia clade. Despite the culturable Asaia clade being the closest phylogenetic neighbour, attempts to culture this newly identified bacterial endosymbiont were unsuccessful. On the basis of these distinct genetic differences, the novel endosymbiont is proposed to be classified into a candidate genus and species ‘Candidatus Kirkpatrickella diaphorinae’. The full genome was deposited in GenBank (accession number CP107052; prokaryotic 16S rRNA OP600170).
-
-
-
Vibrio chanodichtyis sp. nov., isolated from the intestine of swordfish Chanodichthys dabryi
More LessA Gram-stain-negative, facultatively anaerobic, motile, curved-rod-shaped flagellated bacterium, designated DSL-7T, was isolated from the intestine of Chanodichthys dabryi in the Yangtze river, PR China. The strain grew optimally in tryptone soy broth medium at 37 °C, pH 7.0 and with 1 % (w/v) NaCl. Strain DSL-7T showed less than 96.2 % 16S rRNA gene sequence similarity to type strains of the genus Vibrio . Phylogenetic analysis based on genomes indicated that strain DSL-7T belonged to the genus Vibrio and formed a subclade with Vibrio mimicus NCTC 11435T, Vibrio metoecus OP3HT, Vibrio cholerae ATCC 14035T, Vibrio albensis ATCC14547T, Vibrio paracholerae OP3HEDC-792T and Vibrio tarriae 2521-89T. The average nucleotide identity (ANI) and in digital DNA–DNA hybridization (dDDH) values between DSL-7T and closely related type strains were below the accepted threshold to delineate a new species of 95 and 70 %, respectively. The major cellular fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C14 : 0. The genomic DNA G+C content was 47.6 mol%. Based on the phenotypic, chemotaxonomic, phylogenetic and genomic data, strain DSL-7T represents a novel species of the genus Vibrio , for which the name Vibrio chanodichtyis sp. nov. is proposed, with strain DSL-7T (=KCTC 92851T=CCTCC AB 2022396T) as the type strain.
-
-
-
Marinicella marina sp. nov. and Marinicella gelatinilytica sp. nov., isolated from coastal sediment, and genome analysis and habitat distribution of the genus Marinicella
More LessThree Marinicella strains, X102, S1101T and S6413T, were isolated from sediment samples from different coasts of Weihai, PR China. All strains were Gram-stain-negative, rod-shaped and non-motile. The predominant fatty acids of all strains were iso-C15 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c) and the major polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Strains X102 and S1101T shared 100 % 16S rRNA gene sequence similarity, and strains S1101T/X102 and S6413T had 95.4 % similarity. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strains S1101T and X102 were 99.9 and 99.2 %, respectively. Strain S1101T had ANI values of 69.1–72.9% and dDDH values of 17.9–20.5 % to members of the genus Marinicella . Strain S6413T had ANI values of 69.1–77.5% and dDDH values of 17.6–21.5 % to members of the genus Marinicella . The results of phylogenetic and comparative genomic analysis showed that the three strains belong to two novel species in the genus Marinicella , and strains X102 and S1101T represented one novel species, and strain S6413T represented another novel species. The result of BOX-PCR and genomic analysis showed that X102 and S1101T were not the same strain. The phylogenetic analyses and genomic comparisons, combined with phylogenetic, phenotypic and chemotaxonomic features, strongly supported that the three strains should be classified as representing two novel species of the genus Marinicella , for which the names Marinicella marina sp. nov. and Marinicella gelatinilytica sp. nov. are proposed, respectively. The type strains of the two novel species are S1101T (=KCTC 92642T=MCCC 1H01359T) and S6413T (=KCTC 92641T=MCCC 1H01362T), respectively. In addition, all previously described isolates of Marinicella were isolated from marine environments, but our study showed that Marinicella is also distributed in non-/low-saline habitats (e.g. animal gut, soil and indoor surface), which broadened our perception of the environmental distribution of Marinicella .
-
-
-
Hydrogenimonas cancrithermarum sp. nov., a hydrogen- and thiosulfate-oxidizing mesophilic chemolithoautotroph isolated from diffuse-flow fluids on the East Pacific Rise, and an emended description of the genus Hydrogenimonas
A novel mesophilic, hydrogen- and thiosulfate-oxidizing bacterium, strain ISO32T, was isolated from diffuse-flow hydrothermal fluids from the Crab Spa vent on the East Pacific Rise. Cells of ISO32T were rods, being motile by means of a single polar flagellum. The isolate grew at a temperature range between 30 and 55 °C (optimum, 43 °C), at a pH range between 5.3 and 7.6 (optimum, pH 5.8) and in the presence of 2.0–4.0 % NaCl (optimum, 2.5 %). The isolate was able to grow chemolithoautotrophically with molecular hydrogen, thiosulfate or elemental sulfur as the sole electron donor. Thiosulfate, elemental sulfur, nitrate and molecular oxygen were each used as a sole electron acceptor. Phylogenetic analysis of 16S rRNA gene sequences placed ISO32T in the genus Hydrogenimonas of the class Epsilonproteobacteria , with Hydrogenimonas thermophila EP1-55–1 %T as its closest relative (95.95 % similarity). On the basis of the phylogenetic, physiological and genomic characteristics, it is proposed that the organism represents a novel species within the genus Hydrogenimonas , Hydrogenimonas cancrithermarum sp. nov. The type strain is ISO32T (=JCM 39185T =KCTC 25252T). Furthermore, the genomic properties of members of the genus Hydrogenimonas are distinguished from those of members of other thermophilic genera in the orders Campylobacterales ( Nitratiruptor and Nitrosophilus ) and Nautiliales ( Caminibacter , Nautilia and Lebetimonas ), with larger genome sizes and lower 16S rRNA G+C content values. Comprehensive metabolic comparisons based on genomes revealed that genes responsible for the Pta–AckA pathway were observed exclusively in members of mesophilic genera in the order Campylobacterales and of the genus Hydrogenimonas . Our results indicate that the genus Hydrogenimonas contributes to elucidating the evolutionary history of Epsilonproteobacteria in terms of metabolism and transition from a thermophilic to a mesophilic lifestyle.
-
-
-
Roseateles amylovorans sp. nov., isolated from freshwater
A Gram-stain-negative, rod-shaped, amylolytic bacterial strain, designated as bsSlp3-1T, was isolated from the Slepian water system, a freshwater reservoir. Strain bsSlp3-1T was found to be aerobic, oxidase-positive and catalase-negative, grew at 5–37 °C (optimum, 28 °C), pH 5.0–9.5 (optimum, pH 7.0) and low NaCl concentration (up to 1.0 %). Comparative analysis of 16S rRNA gene sequence similarity revealed that strain bsSlp3-1T clustered with Roseateles species and is closely related to Roseateles depolymerans KCTC 42856T (98.7 %) and Roseateles terrae CCUG 52222T (98.6 %). Whole-genome comparisons using average nucleotide identity and digital DNA–DNA hybridization values suggested that strain bsSlp3-1T represents a novel species within the genus Roseateles and is most closely related to Roseateles aquatilis CCUG 48205T (81.2 and 25.6 %, respectively). The genome of strain bsSlp3-1T consisted of a single circular chromosome with size 6 289 366 bp and DNA G+C content of 66.8 mol%. The predominant cellular fatty acids of bsSlp3-1T were cis-9-hexadecanoic and hexadecenoic acids. According to the data obtained in this work, strain bsSlp3-1T represents a novel Roseateles species for which the name Roseateles amylovorans sp. nov. is proposed. The type strain is bsSlp3-1T (=BIM B-1768T=NBIMCC 9098T=VKM B-3671T).
-
-
-
Jiella pelagia sp. nov., isolated from the phosphonate-amended seawater of the northwestern Pacific Ocean
A novel Gram-stain-negative, aerobic, rod-shaped bacterium, designated as HL-NP1T, was isolated from the surface water of the northwestern Pacific Ocean after enrichment cultivation using the organic phosphorous compound of 2-aminoethylphosphonate. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain belonged to the genus Jiella , with the highest similarity to Jiella pacifica 40Bstr34T (98.7 %). The complete genome sequence of strain HL-NP1T comprised a circular chromosome of 5.58 Mbp and two circular plasmids of 0.15 and 0.22 Mbp. Comparison of the genome sequences between strains HL-NP1T and J. pacifica 40Bstr34T revealed that average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values (88.0, 86.4 and 33.9 %, respectively) were below the recommended cut-off levels for delineating bacterial species. Strain HL-NP1T showed optimal growth at 30 °C, pH 6.5–7.0, with 2.0–2.5 % (w/v) NaCl. The sole respiratory quinone was ubiquinone-10. The predominant fatty acid was summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). The polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, an unidentified aminolipid and four unidentified lipids. The G+C content of the genomic DNA was 65.1 %. Based on phylogenetic, genotypic, phenotypic and chemotaxonomic data, strain HL-NP1T is proposed to represent a novel species of the genus Jiella , for which the name Jiella pelagia sp. nov. is proposed. The type strain is HL-NP1T (= KCCM 90499T = JCM 35838T).
-
-
-
Sulfurovum mangrovi sp. nov., an obligately chemolithoautotrophic, hydrogen-oxidizing bacterium isolated from coastal marine sediments
A novel mesophilic, chemolithoautotrophic, hydrogen-oxidizing bacterium, designated strain ST1-3T, was isolated from mud sediment samples collected from mangroves in Jiulong River estuary. The cells were Gram-stain-negative, non-motile and rod-shaped. The temperature, pH and salinity ranges for growth of strain ST1-3T were 4–45 °C (optimum, 35 °C), pH 5.0–8.5 (optimum, pH 7.0) and 0–8.0 % (w/v) NaCl (optimum, 4.0 %). The isolate was an obligate chemolithoautotroph capable of growth using hydrogen as the only energy source, and molecular oxygen, thiosulphate and elemental sulphur as electron acceptors. The major cellular fatty acids of strain ST1-3T were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c). The major polar lipids were phosphatidylethanolamine, phosphatidyldimethyl ethanolamine and phosphatidylglycerol. The respiratory quinone was menaquinone-6. The genomic DNA G+C content was 43.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and core genes showed that the novel isolate belonged to the genus Sulfurovum and was most closely related to Sulfurovum lithotrophicum 42BKTT (94.7 % sequence identity). The average nucleotide identity and digital DNA–DNA hybridization values between ST1-3T and S. lithotrophicum 42BKTT were 74.6 and 16.3 %, respectively. On the basis of the phenotypic, phylogenetic and genomic data presented here, strain ST1-3T represents a novel species of the genus Sulfurovum , for which the name Sulfurovum mangrovi sp. nov. is proposed, with the type strain ST1-3T (=MCCC M25234T=KCTC 25639T).
-
-
-
Neopusillimonas aromaticivorans sp. nov. isolated from poultry manure
More LessA polyphasic taxonomic approach was used to characterize a novel bacterium, designated strain CC-YST667T, isolated from poultry manure sampled in Taiwan. The cells were observed to be aerobic, motile and non-spore-forming rods, displaying positive reactions for oxidase. Optimal growth of CC-YST667T was observed at 25 °C, pH 8.0 and with 1 % (w/v) NaCl. The polar lipid profile consisted of phosphatidylmonomethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and multiple unidentified polar lipids. The major polyamine was spermidine. The major cellular fatty acids (>5 %) included C16 : 0, C17 : 0cyclo, C19 : 0cyclo ω8c and C14 : 0 3OH/iso-C16 : 1 I. On the basis of the results of analysis of 16S rRNA gene sequences, this isolate showed the closest phylogenetic relationship with ‘Neopusillimonas minor’ (with 98.2 % similarity) and Paralcaligenes ureilyticus (with 97.3 % similarity) of the family Alcaligenaceae . The draft genome, (3.3 Mb) with a DNA G+C content of 57.2 mol%, harboured various genes involved in the biodegradation of aromatic hydrocarbons. CC-YST667T shared highest orthologous average nucleotide identity (OrthoANI) with the type strains of species of of the genera Neopusillimonas (72.4‒77.9 %, n=2), Pusillimonas (72.8‒73.0 %, n=2) and Pollutimonas (71.7‒73.0 %, n=5). On the basis of its distinct phylogenetic, phenotypic and chemotaxonomic traits together with the results of comparative 16S rRNA gene sequencing, OrthoANI, digital DNA–DNA hybridization (DDH) and the phylogenomic placement, strain CC-YST667T is considered to represent a novel species of the genus Neopusillimonas, for which the name Neopusillimonas aromaticivorans sp. nov. is proposed. The type strain is CC-YST667T (=BCRC 81321T =JCM 34761T).
-
Volumes and issues
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)