-
Volume 71,
Issue 3,
2021
Volume 71, Issue 3, 2021
- New taxa
-
- Bacteroidetes
-
-
Winogradskyella ouciana sp. nov., isolated from the hadal seawater of the Mariana Trench
A Gram-staining-negative, strictly aerobic, long-rod shaped with no flagellum and yellow-pigmented bacterium designated strain ZXX205T, was isolated from the hadal seawater at the depth of 7500 m in the Mariana Trench, Pacific Ocean. Phylogenetic analysis based on 16S rRNA gene sequences placed strain ZXX205T within the genus Winogradskyella and strain ZXX205T was most closely related to Winogradskyella flava KCTC 52348T and Winogradskyella echinorum KCTC 22026T with 96.9 % and 96.6 % sequence similarity, respectively. The sequence similarities to all other type strains were 96.3 % or less, and to the type strain Winogradskyella thalassocola LMG 22492T was 94.1 %. Growth occurred in the presence of 0–9.0 % (w/v) NaCl (optimum 3.0 %), at 4–45 °C (optimum 28 °C) and pH 6.0–9.0 (optimum pH 7.5). The sole respiratory quinone was menaquinone 6 (MK-6). The dominant cellular fatty acids (>10 %) of strain ZXX205T were iso-C15 : 0, iso-C15 : 1 G, iso-C16 : 0 3-OH and iso-C16 : 0. The polar lipids profile contained predominantly phosphatidylethanolamine, four glycolipids, four unidentified aminolipids and three unidentified lipids. The genomic DNA G+C content was 35.5 %. The DNA–DNA relatedness (DDH) values between strain ZXX205T and the most closely related species Winogradskyella flava and Winogradskyella echinorum were 21.1 and 20.4 %, respectively. Based on polyphasic taxonomic analysis, strain ZXX205T is considered to represent a novel species in the genus Winogradskyella of the family Flavobacteriaceae , for which the name Winogradskyella ouciana is proposed. The type strain is ZXX205T (=MCCC 1K03851T=JCM 33665T).
-
-
-
Flavihalobacter algicola gen. nov. sp. nov., a member of the family Flavobacteriaceae with alginate-degradation activity, isolated from marine alga Saccharina japonica
More LessA Gram-stain-negative, aerobic, yellow, non-motile, rod-shaped and alginate-degrading bacterium, designated Dm15T, was isolated from marine alga collected in Weihai, PR China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain Dm15T represents a distinct line of the family Flavobacteriaceae . Strain Dm15T had the highest 16S rRNA gene sequence similarity to its closest phylogenetic neighbour Arcticiflavibacter luteus (96.7 %) and 93.7–96.4 % sequence similarity to other phylogenetic neighbours ( Bizionia paragorgiae , Winogradskyella thalassocola , Ichthyenterobacterium magnum , Psychroserpens burtonensis and Arcticiflavibacter luteus ) in the family Flavobacteriaceae . The novel isolate was able to grow at 10–40 °C (optimum, 30–33 °C), pH 7.0–9.0 (optimum, pH 7.0–7.5) and with 0.5–6.0 % NaCl (optimum 2.0–3.0 %, w/v). It could grow at 40 °C, and degrade alginate and cellulose, which were different from the neighbour genera. The draft genome consisted of 3395 genes with a total length of 3 798 431 bp and 34.1mol% G+C content. Especially, there were some specific genes coding for cellulase and alginate lyase, which provided a basis for the above phenotypic characteristics. The strain's genome sequence showed 71.1–80.2 % average amino acid identity values and 71.8–77.7 % average nucleotide identity values compared to the type strains of related genera within the family Flavobacteriaceae . It shared digital DNA–DNA hybridization identity of 19.8 and 20.9 % with I. magnum and A. luteus , respectively. The sole menaquinone was MK-6. The major fatty acids were iso-C15 : 0 and iso-C15 : 1 G. The polar lipids included six unidentified polar lipids, four unidentified aminolipids and phosphatidylethanolamine. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain Dm15T represents a novel species of a new genus in the family Flavobacteriaceae , phylum Bacteroidetes , for which the name Flavihalobacter algicola gen. nov., sp. nov. is proposed. The type strain is Dm15T (KCTC 42256T=CICC 23815T).
-
-
-
Arenibacter arenosicollis sp. nov., isolated from a sand dune
More LessA Gram-stain-negative, aerobic, non-spore-forming, non-motile and rod-shaped bacterial strain, designated BSSL-BM3T, was isolated from sand collected from a dune near the Yellow Sea, Republic of Korea, and subjected to a polyphasic taxonomic study. The neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain BSSL-BM3T fell within the clade comprising the type strains of Arenibacter species. Strain BSSL-BM3T exhibited 16S rRNA gene sequence similarity values of 98.0–99.0 % to the type strains of Arenibacter catalasegens , Arenibacter hampyeongensis , Arenibacter echinorum , Arenibacter palladensis and Arenibacter troitsensis and of 94.2–96.7 % to the type strains of the other Arenibacter species. The averagenucleotide identity and digitalDNA–DNA hybridization values between strain BSSL-BM3T and the type strains of A. catalasegens , A. hampyeongensis , A. echinorum , A. palladensis and A. troitsensis were 82.2–88.8 % and 25.0–36.5 %, respectively. The DNA G+C content of strain BSSL-BM3T from genomic sequence data was 38.75 mol%. Strain BSSL-BM3T contained MK-6 as the predominant menaquinone and iso-C17 : 0 3-OH, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and iso-C15 : 1 G as the major fatty acids. The major polar lipids of strain BSSL-BM3T were phosphatidylethanolamine and two unidentified lipids. Distinguishing phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain BSSL-BM3T is separated from recognized Arenibacter species. On the basis of the data presented here, strain BSSL-BM3T is considered to represent a novel species of the genus Arenibacter , for which the name Arenibacter arenosicollis sp. nov. is proposed. The type strain is BSSL-BM3T (=KACC 21632T=NBRC 114502T).
-
-
-
Flavobacterium phycosphaerae sp. nov. isolated from the phycosphere of Microcystis aeruginosa
More LessA novel aerobic bacterial strain, designated MK012T, was isolated from the phycosphere of Microcystis aeruginosa . MK012T appears to be Gram-stain-negative, non-motile and rod-shaped and has yellow pigments. Phylogenetic analysis using 16S rRNA revealed that this bacterium was most closely related to Flavobacterium buctense T7T (=JCM 30750T; 97.5 %), Flavobacterium dankookense ARSA-19T (=KCTC 23179T; 97.5 %) and Flavobacterium macrobrachii an-8T (=DSM 22219T; 97.3 %). The genome size and genomic DNA G+C content of MK012T were estimated at 3.3 Mbp and 37.6 mol%, respectively. The average nucleotide identity (ANI), average amino acid identity (AAI) and in silico DNA–DNA hybridization (dDDH) values of MK012T and the members of the genus Flavobacterium were found to be 71.8–78.3 %, 65.1–79.6% and 19.1–21.5 %, respectively. MK012T exhibited oxidase but no catalase activity. The cells grew at 14–36 °C (optimum, 25 °C), pH 5–10 (optimum, pH 7) and 0–0.4 % (w/v) NaCl (optimum, 0 % NaCl) in R2A medium. MK012T did not produce flexirubin-type pigments. The predominant cellular fatty acids of MK012T were determined to be iso-C15 : 0, iso-C15 : 0 3-OH, iso-C17 : 0 3-OH, and summed feature 9 (10-methyl C16 : 0 and/or iso-C17 : 1ω9c); MK-6 was identified as its only respiratory quinone. Its major polar lipids were determined to be phosphatidylethanolamine, two unidentified aminolipids, and two unidentified polar lipids. The genotypic and phenotypic characteristics indicate that MK012T (=KACC 21509T=JCM 33879T) represents a novel species of the genus Flavobacterium ; therefore, the name Flavobacterium phycosphaerae sp. nov. is proposed.
-
-
-
Flavobacterium baculatum sp. nov., a carotenoid and flexirubin-type pigment producing species isolated from flooded paddy field
More LessA Gram-stain-negative, aerobic, asporogenous, motile by gliding, dull-yellow, long rod-shaped bacterial strain, designated SNL9T, was isolated from a flooded paddy field near Dongguk University, Republic of Korea. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that SNL9T represents a member of the genus Flavobacterium and is most closely related to Flavobacterium ummariense DS-12T (96.2%) and Flavobacterium viscosum YIM 102796T (96.3%). The average nucleotide identity and in silico DNA–DNA hybridization (DDH) values with F. ummariense DS-12T and F. viscosum YIM 102796T were 89.3/39.1 and 87.1/33 %, respectively. The major fatty acids of SNL9T were identified as iso-C15 : 0, summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c) and summed feature 9 (comprising iso-C17 : 1ω9c and/or 10 methyl C16 : 0). SNL9T contained MK-6 as the major respiratory quinone. The polar lipids were phoshatidylethanolamine, one unidentified aminophosphoglycolipid, three unidentified aminoglycolipids, two unidentified glycolipids and one unidentified phosphoglycolipid. The DNA G+C content was 34.2 mol%. SNL9T produces carotenoid and flexirubin-type pigments. Among them, carotenoids are particularly valuable for the biotechnological and pharmaceutical industries due to their antioxidant activity. Aryl polyenes (APE) pigments were also found in SNL9T which are responsible for yellow pigment in bacteria. They are stored in the bacterial membrane and protect the bacteria from oxidative stress, particularly from reactive oxygen species. In this paper, we describe a novel isolate, SNL9T, which protect itself from the attack of free radicals using specific natural products in the membrane. Because of their anti-oxidation properties, aryl polyenes may also be of interest to the cosmetic industry. On the basis of the results of phenotypic, genotypic and chemotaxonomic analyses, SNL9T represents a novel species of the genus Flavobacterium , for which the name Flavobacterium baculatum sp. nov. is proposed. The type is SNL9T (=KACC 21170T=NBRC 113746T).
-
-
-
Kaistella flava sp. nov., isolated from Antarctic tundra soil, and emended descriptions of Kaistella yonginensis, Kaistella jeonii, Kaistella antarctica and Kaistella chaponensis
A rod-shaped, yellow-pigmented, Gram-stain-negative, non-motile and aerobic bacterium, designated 7-3AT, was isolated from soil from King George Island, maritime Antarctica, and subjected to a polyphasic taxonomic study. Growth occurred at 4–37 °C (optimum, 20°C) and at pH 5.0–9.0 (optimum, pH 7.0–8.0). Tolerance to NaCl was up to 4 % (w/v) with optimum growth in the absence of NaCl. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 7-3AT represented a member of the family Flavobacteriaceae . Strain 7-3AT showed the highest sequence similarities with Kaistella yonginensis HMD 1043T (96.65 %), Kaistella carnis NCTC 13525T (96.53 %), Kaistella chaponensis DSM 23145T (96.27 %), Kaistella antarctica LMG 24720T (96.13 %) and Kaistella jeonii DSM 17048T (96.06 %). A whole genome-level comparison of 7-3AT with K. jeonii DSM 17048T, K. antarctica LMG 24720T, K. chaponensis DSM 23145T, and Kaistella palustris DSM 21579T revealed average nucleotide identity (ANI) values of 79.03, 82.25, 78.12, and 74.42 %, respectively. The major respiratory isoprenoid quinone was identified as MK-6 and a few ubiquinones Q-10 were identified. In addition, flexirubin-type pigments were absent. The polar lipid profile of 7-3AT was found to contain one phosphatidylethanolamine, six unidentified aminolipids (AL) and two unidentified lipids (L). The G+C content of the genomic DNA was determined to be 34.54 mol%. The main fatty acids were iso-C15 : 0, summed feature 9 (comprising iso-C17 : 1ω9c and/or C16 : 0 10-methyl), anteiso-C15 : 0, iso-C13 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). On the basis of the evidence presented in this study, a novel species of the genus Kaistella , Kaistella flava sp. nov., is proposed, with the type strain 7-3AT (=CCTCC AB 2016141T= KCTC 52492T). Emended descriptions of Kaistella yonginensis , Kaistella jeonii , Kaistella antarctica and Kaistella chaponensis are also given.
-
-
-
Mucilaginibacter aquatilis sp. nov., Mucilaginibacter arboris sp. nov., and Mucilaginibacter ginkgonis sp. nov., novel bacteria isolated from freshwater and tree bark
More LessThree Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterial strains, designated as HME9299T, HMF7410T and HMF7856T, were isolated from freshwater and tree bark collected in Yong-in, Republic of Korea. Strains HME9299T, HMF7410T and HMF7856T exhibited the highest 16S rRNA gene sequence similarities of 97.2, 94.4 and 96.4 % to Mucilaginibacter daejeonensis Jip 10T, Mucilaginibacter terrae CCM 8645T and Mucilaginibacter phyllosphaerae PP-F2F-G21T, respectively. Among themselves, the values were 94.1–95.7 %. Phylogenetic analysis of the 16S rRNA gene sequences of the three isolates revealed that they belonged to the genus Mucilaginibacter within the family Sphingobacteriaceae . The predominant fatty acids of three strains were summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c) and iso-C15 : 0. Strain HME9299T contained a relatively large amount of C16 : 1 ω5c. The predominant respiratory quinone was menaquinone-7. The genome sizes of strains HME9299T, HMF7410T and HMF7856T were 4.33, 4.16 and 3.68 Mbp, respectively, and their DNA G+C contents were 41.6, 38.4 and 43.9 mol%, respectively. Based on the results of the phenotypic, genotypic, chemotaxonomic and phylogenetic investigation, three novel species, Mucilaginibacter aquatilis sp. nov, Mucilaginibacter arboris sp. nov. and Mucilaginibacter ginkgonis sp. nov., are proposed. The type strains are HME9299T (=KCTC 42122T=DSM 29146T), HMF7410T (=KCTC 62464T=NBRC 113227T) and HMF7856T (=KCTC 72782T=NBRC 114275T), respectively.
-
-
-
Jannaschia marina sp. nov., isolated from the gut of a gastropod, Onchidium reevesii
More LessA taxonomic study was carried out on strain SHC163T, which was isolated from the gut of Onchidium reevesii. The bacterium was Gram-stain-negative, oxidase-positive, catalase-negative and rod-shaped. Growth was observed at salinities of 0–4.0 % NaCl and at temperatures of 15–35 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SHC163T belonged to the genus Jannaschia , with the highest sequence similarity to Jannaschia seosinensis CL-SP26T (97.9%), followed by Jannaschia faecimaris DSM 100420T (97.8 %), Jannaschia rubra CECT 5088T (97.5%) and eight species of the genus Jannaschia (94.7−97.1 %). The average amino acid identity, average nucleotide identity and the digital DNA–DNA hybridization estimate values between strain SHC163T and the type strains of the genus Jannaschia were 64.33−79.78 %, 71.0−78.4 % and 19.2−21.0%, respectively. The principal fatty acids (>5 %) were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c, 56.5 %), C18 : 1 ω7c 11-methyl (23.1 %), C18 : 0 (8.7 %). The G+C content of the chromosomal DNA was 67.8 mol%. The respiratory quinone was determined to be Q-10 (100 %). The polar lipids were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and aminophospholipid. The combined genotypic and phenotypic data show that strain SHC163T represents a novel species within the genus Jannaschia , for which the name Jannaschia marina sp. nov. is proposed, with the type strain SHC163T (=MCCC 1K04032T=KCTC 72524T).
-
-
-
Kaistella gelatinilytica sp. nov., a flavobacterium isolated from Antarctic soil
More LessA Gram-stain-negative, aerobic, non-spore-forming, rod-shaped, non-motile, yellow-pigmented bacteria, designated strain G5-32T, belonging to the genus Kaistella was isolated from soil collected in the Antarctic. The strain was identified using a polyphasic taxonomic approach. The strain grew in the presence of 0–5% (w/v) NaCl (optimum, 1%), at pH 6.0–9.0 (optimum, pH 8.0) and at 4–28 °C (optimum, 20 °C). The predominant menaquinone was MK-6 (99.4%). The major fatty acids were anteiso-C15:0 (28.2%), iso-C15:0 (16.4%), summed feature 9 (comprising iso-C17:1 ω9c and/or 10-methyl C16:0; 10.6%) and iso-C16:0 (5.9%). A phylogenetic tree based on 16S rRNA gene sequences showed that strain G5-32T formed a lineage within the genus Kaistella with the closest phylogenetic neighbours Kaistella yonginensis HMD1043T, Kaistella chaponensis DSM 23145T, Kaistella jeonii DSM 17048T and Kaistella carnis NCTC 13525T (97.9, 97.8, 97.8 and 98.0 % 16S rRNA gene sequence similarity, respectively). The ANI values between strain G5-32T and K. jeonii DSM 17048T, K. chaponensis DSM 23145T, K. carnis NCTC 13525T and K. yonginensis HMD1043T were 90.9, 82.6, 77.1 and 76.3%. Concurrently, digital DNA–DNA hybridization values of strain G5-32T assessed against K. jeonii DSM 17048T, K. chaponensis DSM 23145T, K. carnis NCTC 13525T and K. yonginensis HMD1043T were 42.3, 25.9, 21.7 and 21.3%, respectively. Based on phenotypic, phylogenetic and genotypic data, a novel species, Kaistella gelatinilytica sp. nov., is proposed. The type strain is G5-32T (=CCTCC AA 2019083T=KCTC 72766T).
-
-
-
Spirosoma utsteinense sp. nov. isolated from Antarctic ice-free soils from the Utsteinen region, East Antarctica
More LessBetween 2014 and 2016, 16 Gram-stain-negative, aerobic, rod-shaped and yellow-orange pigmented bacteria were isolated from exposed soils from the Utsteinen region, Sør Rondane Mountains, East Antarctica. Analysis of their 16S rRNA gene sequences revealed that the strains form a separate cluster in the genus Spirosoma , with Spirosoma rigui KCTC 12531T as its closest neighbour (97.8 % sequence similarity). Comparative genome analysis of two representative strains (i.e. R-68523T and R-68079) of the new group with the type strains of Spirosoma rigui (its closest neighbour) and Spirosoma linguale (type species of the genus), yielded average nucleotide identity values of 73.9–78.7 %. Digital DNA–DNA reassociation values of the two strains and these type strains ranged from 20.3 to 22.0 %. The predominant cellular fatty acids of the two novel strains were summed feature 3 (i.e. C16 : 1 ω7c and/or iso-C15 2-OH), C16 : 1 ω5c, C16 : 0 and iso-C15 : 0. The new Spirosoma strains grew with 0–0.5 % (w/v) NaCl, at pH 6.5–8.0 and displayed optimum growth between 15 and 25 °C. Based on the results of phenotypic, genomic, phylogenetic and chemotaxonomic analyses, the new strains represent a novel species of the genus Spirosoma for which the name Spirosoma utsteinense sp. nov. is proposed. The type strain is R-68523T (=LMG 31447T=CECT 9925T).
-
-
-
Muricauda sediminis sp. nov., isolated from western Pacific Ocean sediment
A Gram-stain-negative bacterium, designated strain 40Bstr401T, was isolated from a sediment sample collected from the western Pacific Ocean. Analysis of its 16S rRNA gene sequence revealed that strain 40Bstr401T belongs to the genus Muricauda and is closely related to type strains Muricauda antarctica Ar-22T (98.2 %), Muricauda taeanensis 105T (98.2 %) and Muricauda beolgyonensis BB-My12T (97.4 %). The average nucleotide identity values for 40Bstr401T with M. antarctica Ar-22T and M. taeanensis 105T are 79.3 % and 78.8 %, respectively. The in silico DNA–DNA hybridization values between strain 40Bstr401T and M. antarctica Ar-22T and M. taeanensis 105T are 26.7 and 26.6 %, respectively. The major isoprenoid quinone of 40Bstr401T is MK-6, and iso-C17 : 0 3-OH and iso-C15 : 0 are the dominant cellular fatty acids. The major polar lipids are phosphatidylethanolamine, four unidentified amino lipids and two unidentified lipids. The G+C content of the genomic DNA is 42.9 mol%. Its phylogenetic distinctiveness and chemotaxonomic differences, together with the phenotypic properties observed in this study, indicate that strain 40Bstr401T can be differentiated from closely related species. Therefore, we propose strain 40Bstr401T represents a novel species in the genus Muricauda , for which the name Muricauda sediminis sp. nov. is suggested. The type strain is 40Bstr401T (=MCCC 1K04568T=KCTC 82139T).
-
-
-
Muricauda amphidinii sp. nov., a novel marine bacterium isolated from the phycosphere of dinoflagellate Amphidinium carterae
Yuerong Chen, Zhong Hu and Hui WangA Gram-stain-negative, aerobic, rod-shaped and non-motile bacterium was isolated from a liquid culture of dinoflagellate Amphidinium carterae and further designated as LMIT004T. Optimal growth was observed at 25 °C, pH 7.0 and in the presence of 2 % (w/v) NaCl. Oxidase and catalase were positive. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain LMIT004T showed high similarities to type strains Muricauda nanhaiensis SM17004T (96.77 %) and Muricauda aquimarina JCM11811T (95.60 %) but formed a separate branch in the genus Muricauda . The G+C content of strain LMIT004T was 39.0 mol%. The dominant fatty acids were iso-C15 : 0 and iso-C15 : 1 G. The polar lipids mainly contained phosphatidylethanolamine, five unidentified phospholipids and five unidentified polar lipids. The sole respiratory quinone was menaquinone-6 (MK-6). The draft genome of the type strain was 3.88 Mbp. The average nucleotide identity values between strain LMIT004T and the two reference strains M. nanhaiensis SM17004T and M. aquimarina JCM11811T were 77.47 and 73.49 %, respectively. Based on the polyphasic analysis, strain LMIT004T is suggested to represent a novel specie in the genus of Muricauda , for which the name Muricauda amphidinii sp. nov. is proposed. The type strain is LMIT004T (=CICC 24871T=KCTC 72948T).
-
- Firmicutes and Related Organisms
-
-
Neobacillus endophyticus sp. nov., an endophytic bacterium isolated from Selaginella involvens roots
A Gram-stain-positive, facultatively anaerobic, rod-shaped, endospore-forming, oxidase-positive, and catalase-negative strain designated as BRMEA1T was isolated from the surface-sterilized Selaginella involvens roots. Growth of strain BRMEA1T was found to occur at pH 6.0–8.0 (optimum, pH 7.0), 15–50 °C (optimum, 25–30 °C) and in the absence of NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain BRMEA1T formed a lineage within the genus Neobacillus (family Bacillaceae ) and showed the highest sequence similarity to Neobacillus drentensis DSM 15600T (98.3 %) and Neobacillus fumarioli KCTC 13885T (98.2 %), and less than 98.2 % 16S rRNA gene sequence similarity to the other members of the genus Neobacillus . Whole-genome analysis of strain BRMEA1T comprised a circular chromosome (5 632 809 bp in size) with 38.5 mol% G+C content. Digital DNA–DNA hybridization analyses revealed that strain BRMEA1T showed 20.5 and 22.0% genomic DNA relatedness with the closest species, N. drentensis DSM 15600T and N. fumarioli KCTC 13885T, respectively. The whole-genome sequence of strain BRMEA1T showed the presence of 11 specific conserved signature indels for the genus Neobacillus . The major cellular fatty acids (>10 %) of strain BRMEA1T were found to be iso-C15 : 0 and anteiso-C15 : 0, while the major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Polyphasic analysis results revealed that BRMEA1T represents a novel species of the genus Neobacillus , with the proposed name Neobacillus endophyticus sp. nov. The type strain is BRMEA1T (=KCTC 43208T=CCTCC AB 2020071T).
-
-
-
Companilactobacillus pabuli sp. nov., a lactic acid bacterium isolated from animal feed
A Gram-positive, facultative anaerobic, catalase-negative, non-motile, non-spore-forming and rod-shaped lactic acid bacterium strain, denoted as NFFJ11T and isolated from total mixed fermentation feed in the Republic of Korea, was characterized through polyphasic approaches, including sequence analyses of the 16S rRNA gene and housekeeping genes (rpoA and pheS), determination of average nucleotide identity and in silico DNA–DNA hybridization, fatty acid methyl ester analysis, and phenotypic characterization. Phylogenetic analyses based on 16S rRNA, rpoA and pheS gene sequences revealed that strain NFFJ11T belonged to the genus Companilactobacillus . The 16S rRNA gene sequence of strain NFFJ11T exhibited high similarity to Companilactobacillus formosensis S215T (99.66 %), Companilactobacillus farciminis Rv4 naT (99.53 %), Companilactobacillus crustorum LMG 23699T (99.19 %), Companilactobacillus futsaii YM 0097T (99.06 %), Companilactobacillus zhachilii HBUAS52074T (98.86 %) and Companilactobacillus heilongiiangensis S4-3T (98.66 %). However, average nucleotide identity and in silico DNA–DNA hybridization values for these type strains were in the range of 79.90–92.93 % and 23.80–49.30 %, respectively, which offer evidence that strain NFFJ11T belongs to a novel species of the genus Companilactobacillus . The cell-wall peptidoglycan type was A4α (l-Lys–d-Asp) and the G+C content of the genomic DNA was 35.7 mol%. The main fatty acids of strain NFFJ11T were C18 : 1 ω9c (43.3 %), C16 : 0 (20.1 %) and summed feature 7 (18.3 %; comprising any combination of C19 : 1 ω7c, C19 : 1 ω6c and C19 : 0 cyclo ω10c). Through polyphasic taxonomic analysis, it was observed that strain NFFJ11T represents a novel species belonging to the genus Companilactobacillus , for which the name Companilactobacillus pabuli sp. nov. is proposed. The type strain is NFFJ11T (= KACC 21771T= JCM 34088T).
-
-
-
Sporofaciens musculi gen. nov., sp. nov., a novel bacterium isolated from the caecum of an obese mouse
A bacterial strain, designated WCA-9-b2T, was isolated from the caecal content of an 18-week-old obese C57BL/6NTac male mouse. According to phenotypic analyses, the isolate was rod-shaped, strictly anaerobic, spore-forming, non-motile and Gram-stain-positive, under the conditions tested. Colonies were irregular and non-pigmented. Analysis of the 16S rRNA gene sequence indicated that the isolate belonged to the order Clostridiales with Dorea longicatena ATCC 27755T (94.9 % sequence identity), Ruminococcus gnavus ATCC 29149T (94.8%) and Clostridium scindens ATCC 35704T (94.3%) being the closest relatives. Whole genome sequencing showed an average nucleotide identity <74.23 %, average amino acid identity <64.52–74.67 % and percentage of conserved proteins values <50 % against the nine closest relatives ( D. longicatena , Ruminococcus gnavus , C. scindens , Dorea formicigenerans , Ruminococcus lactaris , Clostridium hylemonae , Merdimonas faecis , Faecalicatena contorta and Faecalicatena fissicatena ). The genome-based G+C content of genomic DNA was 44.4 mol%. The major cellular fatty acids were C16 : 0 (24.5%), C18 : 1 cis9 (19.8 %), C16 : 0 DMA (11.7%), C18 : 0 (8.4%) and C14 : 0 (6.6%). Respiratory quinones were not detected. The predominant metabolic end products of glucose fermentation were acetate and succinate. Production of CO2 and H2 were detected. Based on these data, we propose that strain WCA-9-b2T represents a novel species within a novel genus, for which the name Sporofaciens musculi gen. nov., sp. nov. is proposed. The type strain is WCA-9-b2T (=DSM 106039T=CECT 30156T).
-
-
-
Ruminiclostridium herbifermentans sp. nov., a mesophilic and moderately thermophilic cellulolytic and xylanolytic bacterium isolated from a lab-scale biogas fermenter fed with maize silage
More LessAn anaerobic bacterial strain, designated MA18T, was isolated from a laboratory-scale biogas fermenter fed with maize silage. Cells stained Gram-negative and performed Gram-negative in the KOH test. The peptidoglycan type was found to be A1y-meso-Dpm direct. The major cellular fatty acids were C14 : 0 iso, C15 : 0 iso, anteiso and iso DMA as well as a C16 unidentified fatty acid. Oxidase and catalase activities were absent. Cells were slightly curved rods, motile, formed spores and measured approximately 0.35 µm in diameter and 3.0–5.0 µm in length. When cultivated on GS2 agar with cellobiose, round, arched, shiny and slightly yellow-pigmented colonies were formed. The isolate was mesophilic to moderately thermophilic with a growth optimum between 40 and 48 °C. Furthermore, neutral pH values were preferred and up to 1.2 % (w/v) NaCl supplemented to the GS2 medium was tolerated. Producing mainly acetate and ethanol, MA18T fermented arabinose, cellobiose, crystalline and amorphous cellulose, ribose, and xylan. The genome of MA18T consists of 4 817 678 bp with a G+C content of 33.16 mol%. In the annotated protein sequences, cellulosomal components were detected. Phylogenetically, MA18T is most closely related to Ruminiclostridium sufflavum DSM 19573T (76.88 % average nucleotide identity of the whole genome sequence; 97.23 % 16S rRNA gene sequence similarity) and can be clustered into one clade with other species of the genus Ruminiclostridium , family Oscillospiraceae , class Clostridia . Based on morphological, physiological and genetic characteristics, this strain represents a novel species in the genus Ruminiclostridium . Therefore, the name Ruminiclostridium herbifermentans sp. nov. is proposed. The type strain is MA18T (=DSM 109966T=JCM 39124T).
-
-
-
Criibacterium bergeronii gen. nov., sp. nov., a new member of the family Peptostreptococcaceae, isolated from human clinical samples
A rod-shaped, motile anaerobic bacterium, designated CCRI-22567T, was isolated from a vaginal sample of a woman diagnosed with bacterial vaginosis and subjected to a polyphasic taxonomic study. The novel strain was capable of growth at 30–42 °C (optimum, 42 °C), at pH 5.5–8.5 (optimum, pH 7.0–7.5) and in the presence of 0–1.5 % (w/v) NaCl (optimally at 0.5 % NaCl). The phylogenetic trees based on 16S rRNA gene sequences showed that strain CCRI-22567T forms a distinct evolutionary lineage independent of other taxa in the family Peptostreptococcaceae . Strain CCRI-22567T exhibited 90.1 % 16S rRNA gene sequence similarity to Peptoanaerobacter stomatis ACC19aT and 89.7 % to Eubacterium yurii subsp. schtitka ATCC 43716. The three closest organisms with an available whole genome were compared to strain CCRI-22567T for genomic relatedness assessment. The genomic average nucleotide identities (OrthoANIu) obtained with Peptoanaerobacter stomatis ACC19aT, Eubacterium yurii subsp. margaretiae ATCC 43715 and Filifactor alocis ATCC 35896T were 71.8, 70.3 and 69.6 %, respectively. Strain CCRI-22567T contained C18 : 1 ω9c and C18 : 1 ω9c DMA as the major fatty acids. The DNA G+C content of strain CCRI-22567T based on its genome sequence was 33.8 mol%. On the basis of the phylogenetic, chemotaxonomic and other phenotypic properties, strain CCRI-22567T is considered to represent a new genus and species within the family Peptostreptococcaceae , for which the name Criibacterium bergeronii gen. nov., sp. nov., is proposed. The type strain of Criibacterium bergeronii is CCRI-22567T (=LMG 31278T=DSM 107614T=CCUG 72594T).
-
-
-
Capillibacterium thermochitinicola gen. nov., sp. nov., a novel anaerobic thermophilic chitinolytic bacterium from compost
More LessA novel Gram-negative, spore forming, obligately anaerobic, thermophilic, chitin-degrading bacterium, designated UUS1-1T, was isolated from compost on Ishigaki Island, Japan by enrichment culturing using chitin powder as the carbon source. The strain has unique, long, hair-like rod morphological features and exhibits strong degradation activity toward crystalline chitin under thermophilic conditions. Growth of the novel strain was observed at 45–65 °C (optimum, 55 °C) and pH 6.5–7.5 (optimum, pH 7.0). In addition to chitin, the strain utilized several other carbon sources, including N-acetylglucosamine, glucose, galactose, mannose, maltose, cellobiose, fructose and sucrose. The end products of chitin degradation were acetate, lactate, H2 and CO2. Phylogenetic tree analysis based on 16S rRNA gene sequences revealed a clear affiliation of the proposed bacterium to the phylum Firmicutes ; the most closely related species were Hydrogenispora ethanolica LX-BT and Desulfotomaculum thermobenzoicum DSM6193T with similarities of 90.4 and 87.8 %, respectively. The G+C content of the genomic DNA was 52.1 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between the genomes of UUS1-1T and H. ethanolica LX-BT were 65.5 and 21.0 %, respectively. The cellular fatty acid composition of the strain was C16 : 0, anteiso-C15 : 0, C14 : 0, C12 : 0 3-OH and dimethyl acetal-C13 : 0. Based on phenotypic, chemotaxonomic and genotypic analysis, strain UUS1-1T represents a novel genus and species, for which the name Capillibacterium thermochitinicola gen. nov., sp. nov. is proposed. The type strain is UUS1-1T (=JCM 33882T=DSM 111537T).
-
-
-
Clostridium vitabionis sp. nov., isolated from the large intestine of a mini-pig
More LessAn obligately anaerobic, Gram-stain-negative, spore-forming, short rod-shaped bacterium, designated strain YH- T4B42T, was isolated from the large intestine of a mini-pig. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the genus Clostridium and is most closely related to Clostridium aminophilum KCTC 5424T, Clostridium symbiosum KCTC 15329T and Clostridium butyricum KCTC 1871T, with 95.5, 92.4 and 83.0 % sequence similarity, respectively. The average nucleotide identity values for strain YH-T4B42T and the closest related strains were lower than 72 %. The G+C content of the isolate was 55.8 mol%. The cell-wall peptidoglycan was A1γ type and contained meso-diaminopimelic acid. The predominant fatty acids were C16 : 0, C18 : 1 cis 9, C14 : 0 and C18 : 0. The major end products of glucose fermentation were lactate, formate and acetate, with a minor amount of butyrate. Based on its phenotypic, phylogenetic and chemotaxonomic properties, a novel species, Clostridium vitabionis sp. nov., is proposed for strain YH-T4B42T (=KCTC 25105T=NBRC 114767T).
-
-
-
Megasphaera lornae sp. nov., Megasphaera hutchinsoni sp. nov., and Megasphaera vaginalis sp. nov.: novel bacteria isolated from the female genital tract
Six strictly anaerobic Gram-negative bacteria representing three novel species were isolated from the female reproductive tract. The proposed type strains for each species were designated UPII 199-6T, KA00182T and BV3C16-1T. Phylogenetic analyses based on 16S rRNA gene sequencing indicated that the bacterial isolates were members of the genus Megasphaera . UPII 199-6T and KA00182T had 16S rRNA gene sequence identities of 99.9 % with 16S rRNA clone sequences previously amplified from the human vagina designated as Megasphaera type 1 and Megasphaera type 2, members of the human vaginal microbiota associated with bacterial vaginosis, preterm birth and HIV acquisition. UPII 199-6T exhibited sequence identities ranging from 92.9 to 93.6 % with validly named Megasphaera isolates and KA00182T had 16S rRNA gene sequence identities ranging from 92.6–94.2 %. BV3C16-1T was most closely related to Megasphaera cerevisiae with a 16S rRNA gene sequence identity of 95.4 %. Cells were coccoid or diplococcoid, non-motile and did not form spores. Genital tract isolates metabolized organic acids but were asaccharolytic. The isolates also metabolized amino acids. The DNA G+C content for the genome sequences of UPII 199-6T, KA00182T and BV3C16-1T were 46.4, 38.9 and 49.8 mol%, respectively. Digital DNA–DNA hybridization and average nucleotide identity between the genital tract isolates and other validly named Megasphaera species suggest that each isolate type represents a new species. The major fatty acid methyl esters include the following: C12 : 0, C16 : 0, C16 : 0 dimethyl acetal (DMA) and summed feature 5 (C15 : 0 DMA and/or C14 : 0 3-OH) in UPII 199-6T; C16 : 0 and C16 : 1 cis 9 in KA00182T; C12 : 0; C14 : 0 3-OH; and summed feature 5 in BV3C16-1T. The isolates produced butyrate, isobutyrate, and isovalerate but there were specific differences including production of formate and propionate. Together, these data indicate that UPII 199-6T, KA00182T and BV3C16-1T represent novel species within the genus Megasphaera . We propose the following names: Megasphaera lornae sp. nov. for UPII 199-6T representing the type strain of this species (=DSM 111201T=ATCC TSD-205T), Megasphaera hutchinsoni sp. nov. for KA00182T representing the type strain of this species (=DSM 111202T=ATCC TSD-206T) and Megasphaera vaginalis sp. nov. for BV3C16-1T representing the type strain of this species (=DSM 111203T=ATCC TSD-207T).
-
Volumes and issues
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)
Most Read This Month
