-
Volume 71,
Issue 1,
2020
Volume 71, Issue 1, 2020
- New Taxa
-
- Firmicutes and Related Organisms
-
-
Clostridium fessum sp. nov., isolated from human faeces
More LessAn obligately anaerobic, Gram-stain-positive and spore-forming strain, SNUG30386T was isolated from a faecal sample of a healthy Korean subject. The strain formed a round ivory-coloured colony and cells were chained rods with tapered ends, approximately 2.0–2.5×0.6–0.8 μm in size. The taxonomic analysis indicated that strain SNUG30386T was within the family Lachnospiraceae . According to the 16S rRNA gene sequence similarity, the closest species to strain SNUG30386T was Clostridium symbiosum (95.6 %), followed by Enterocloster asparagiformis (94.8 %), Enterocloster clostridioformis (94.8 %) and Enterocloster lavalensis (94.6 %). The evolutionary tree based on 16S rRNA gene sequences demonstrated that strain SNUG30386T had split apart at a unique branch point far from other close relatives. Its DNA G+C content was 48.3 mol% calculated from the whole genome sequence. The major cellular fatty acids were C16 : 0 and C14 : 0. Compared to those of the closely related species, strain SNUG30386T showed distinct biochemical activities such as being unable to utilize most of carbon sources except d-glucose and l-arabinose. As a result, based on its unique phylogenetic clade and taxonomic characteristics, we conclude that strain SNUG30386T represents a novel species within the genus Clostridium , for which the name Clostridium fessum sp. nov. is proposed. The type strain of the novel species is SNUG30386T (=KCTC 15633T= JCM 32258T).
-
-
-
Veillonella nakazawae sp. nov., an anaerobic Gram-negative coccus isolated from the oral cavity of Japanese children
Two strains of previously unknown Gram-negative cocci, T1-7T and S6-16, were isolated from the oral cavity of healthy Japanese children. The two strains showed atypical phenotypic characteristics of members of the genus Veillonella , including catalase production. Sequencing of their 16S rRNA genes confirmed that they belong to genus Veillonella . Under anaerobic conditions, the two strains produced acetic acid and propionic acid as metabolic end-products in a trypticase–yeast extract–haemin medium containing 1 % (w/v) glucose, 1 % (w/v) fructose and 1 % (v/v) sodium lactate. Comparative analysis of the 16S rRNA, dnaK, rpoB and gltA gene sequences revealed that the two strains are phylogenetically homogeneous and comprise a distinct, novel lineage within the genus Veillonella . The sequences from the two strains shared the highest similarity, at 99.9, 95.8, 96.9 and 96.7 %, using the partial 16S rRNA, dnaK, rpoB and gltA gene sequences, respectively, with the type strains of the two most closely related species, Veillonella dispar ATCC 17748T and Veillonella infantium JCM 31738T. Furthermore, strain T1-7T shared the highest average nucleotide identity (ANI) value (94.06 %) with type strain of the most closely related species, V. infantium . At the same time, strain T1-7T showed the highest digital DNA–DNA hybridization (dDDH) value (55.5 %) with the type strain of V. infantium . The two strains reported in this study were distinguished from the previously reported species from the genus Veillonella based on catalase production, partial dnaK, rpoB and gltA sequences, average ANI and dDDH values. Based on these observations, the two strains represent a novel species, for which the name Veillonella nakazawae sp. nov. is proposed. The type strain is T1-7T (JCM 33966T=CCUG 74597T).
-
-
-
'Candidatus Phytoplasma sacchari’, a novel taxon - associated with Sugarcane Grassy Shoot (SCGS) disease
More LessSugarcane Grassy Shoot (SCGS) disease is known to be related to Rice Yellow Dwarf (RYD) phytoplasmas (16SrXI-B group) which are found predominantly in sugarcane growing areas of the Indian subcontinent and South-East Asia. The 16S rRNA gene sequences of SCGS phytoplasma strains belonging to the 16SrXI-B group share 98.07 % similarity with ‘Ca. Phytoplasma cynodontis’ strain BGWL-C1 followed by 97.65 % similarity with ‘Ca. P. oryzae’ strain RYD-J. Being placed distinctly away from both the phylogenetically related species, the taxonomic identity of SCGS phytoplasma is unclear and confusing. We attempted to resolve the phylogenetic positions of SCGS phytoplasma based on the phylogenetic analysis of 16S rRNA gene (>1500 bp), nine housekeeping genes (>3500 aa), core genome phylogeny (>10 000 aa) and OGRI values. The draft genome sequences of SCGS phytoplasma (strain SCGS) and Bermuda Grass White leaf (BGWL) phytoplasma (strain LW01), closely related to ‘Ca. P. cynodontis’, were obtained. The SCGS genome was comprised of 29 scaffolds corresponding to 505 173 bp while LW01 assembly contained 21 scaffolds corresponding to 483 935 bp with the fold coverages over 330× and completeness over 90 % for both the genomes. The G+C content of SCGS was 19.86 % while that of LW01 was 20.46 %. The orthoANI values for the strain SCGS against strains LW01 was 79.42 %, and dDDH values were 22. Overall analysis reveals that SCGS phytoplasma forms a distant clade in RYD group of phytoplasmas. Based on phylogenetic analyses and OGRI values obtained from the genome sequences, a novel taxon ‘Candidatus Phytoplasma sacchari’ is proposed.
-
-
-
Mesobacillus harenae sp. nov., isolated from the sandy soil of a cold desert
A bacterial strain, designated Y40T, was isolated from sandy soil sampled on the Qinghai–Tibet Plateau. A polyphasic study confirmed the affiliation of the strain with the genus Mesobacillus . Strain Y40T was found to be an aerobic, Gram-stain-positive, motile and rod-shaped bacterium. The strain grew at 10–42 °C, pH 6–9 and with 0–2 % (w/v) NaCl. The diagnostic amino acid was meso-diaminopimeilic acid. MK7 was predominant menaquinone, and iso-C15:0, iso-C17:1 ω10c and anteiso-C15:0 were the major fatty acids. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified lipid. The DNA G+C content was 40.6 mol%. Based on he results of 16S rRNA gene sequence analysis, strain Y40T was phylogenetically closely related to Mesobacillus zeae JJ-247T and Mesobacillus foraminis CV53T, with similarities of 98.0 and 97.7 %, respectively. The average nucleotide identity (ANIb) values between strain Y40T and Mesobacillus zeae JJ-247T and Mesobacillus foraminis CV53T were 69.9 and 70.0 %, respectively. Based on the morphological, physiological, and chemotaxonomic data, it is proposed that strain Y40T (=CICC 24459T=JCM 32794T) should be classified into the genus Mesobacillus as Mesobacillus harenae sp. nov.
-
-
-
Leuconostoc falkenbergense sp. nov., isolated from a lactic culture, fermentating string beans and traditional yogurt
Yan Wu and Chun Tao GuIn the present study, the taxonomic positions of five strains (C, 17-2, LMG 10779T, LMG 18969 and LMG 11483) of Leuconostoc pseudomesenteroides were re-evaluated by a polyphasic approach, including the analyses of 16S rRNA, pheS and rpoA gene sequences, cellular fatty acids, average nucleotide and amino acid identities (ANI and AAI), digital DNA–DNA hybridization (dDDH), and phenotypic features. Based on rpoA sequence analysis, the five strains and L. pseudomesenteroides LMG 11482T were divided into two groups: strains C, LMG 10779T and LMG 18969; strains 17-2, LMG 11483 and LMG 11482T. Each of the two groups had almost identical rpoA sequences. The rpoA sequence similarity between strain LMG 10779T and L. pseudomesenteroides LMG 11482T was 95.6 %. Strains LMG 11483 and 17-2 had 98.1 and 97.2 % ANI values, 83.5 and 73.2 % dDDH values, and a 97.0 % AAI value with L. pseudomesenteroides LMG 11482T, greater than the threshold for species demarcation, indicating that strains LMG 11483 and 17-2 belong to L. pseudomesenteroides . Strains LMG 18969 and C shared 97.1 and 98.2 % ANI values, 73.4 and 83.2 % dDDH values, and 96.9 and 96.6 % AAI values with strain LMG 10779T, greater than the threshold for species demarcation, indicating that strains LMG 10779T, LMG 18969 and C represent the same species. The ANI, dDDH and AAI values between strain LMG 10779T and the type strains of phylogenetically related species were 75.2–92.5, 20.0–48.2 and 75.3–93.9 %, respectively, below the thresholds for species demarcation, indicating that strain LMG 10779T represents a novel species within the genus Leuconostoc . On the basis of the results presented here, (i) strains 17-2 and LMG 11483 belong to L. pseudomesenteroides , and (ii) strains LMG 10779T, LMG 18969 and C are considered to represent a novel species within the genus Leuconostoc , for which the name Leuconostoc falkenbergense sp. nov. is proposed with the type strain LMG 10779T (=CCUG 27119T).
-
-
-
The agent associated with blue dwarf disease in wheat represents a new phytoplasma taxon, ‘Candidatus Phytoplasma tritici’
More LessWheat blue dwarf (WBD) is one of the most economically damaging cereal crop diseases in northwestern PR China. The agent associated with the WBD disease is a phytoplasma affiliated with the aster yellows (AY) group, subgroup C (16SrI-C). Since phytoplasma strains within the AY group are ecologically and genetically diverse, it has been conceived that the AY phytoplasma group may consist of more than one species. This communication presents evidence to demonstrate that, while each of the two 16 rRNA genes of the WBD phytoplasma shares >97.5 % sequence similarity with that of the ‘Candidatus Phytoplasma asteris’ reference strain, the WBD phytoplasma clearly represents an ecologically separated lineage: the WBD phytoplasma not only has its unique transmitting vector (Psammotettix striatus) but also elicits a distinctive symptom in its predominant plant host (wheat). In addition, the WBD phytoplasma possesses molecular characteristics that further manifest its significant divergence from ‘Ca. P. asteris’. Such molecular characteristics include lineage-specific antigenic membrane proteins and a lower than 95 % genome-wide average nucleotide identity score with ‘Ca. P. asteris’. These ecological, molecular and genomic evidences justify the recognition of the WBD phytoplasma as a novel taxon, ‘Candidatus Phytoplasma tritici’.
-
- Other Bacteria
-
-
‘Candidatus Phytoplasma stylosanthis’, a novel taxon with a diverse host range in Australia, characterised using multilocus sequence analysis of 16S rRNA, secA, tuf, and rp genes
In Australia, Stylosanthes little leaf (StLL) phytoplasma has been detected in Stylosanthes scabra Vogel, Arachis pintoi Krapov, Saccharum officinarum L., Carica papaya L., Medicago sativa L., and Solanum tuberosum L. The 16S rRNA gene sequence of StLL phytoplasma strains from S. scabra, C. papaya, S. officinarum and S. tuberosum were compared and share 99.93–100 % nucleotide sequence identity. Phylogenetic comparisons between the 16S rRNA genes of StLL phytoplasma and other ‘Candidatus Phytoplasma’ species indicate that StLL represents a distinct phytoplasma lineage. It shares its most recent known ancestry with ‘Ca. Phytoplasma luffae’ (16SrVIII-A), with which it has 97.17–97.25 % nucleotide identity. In silico RFLP analysis of the 16S rRNA amplicon using iPhyClassifier indicate that StLL phytoplasmas have a unique pattern (similarity coefficient below 0.85) that is most similar to that of ‘Ca. Phytoplasma luffae’. The unique in silico RFLP patterns were confirmed in vitro. Nucleotide sequences of genes that are more variable than the 16S rRNA gene, namely tuf (tu-elongation factor), secA (partial translocation gene), and the partial ribosomal protein (rp) gene operon (rps19-rpl22-rps3), produced phylogenetic trees with similar branching patterns to the 16S rRNA gene tree. Sequence comparisons between the StLL 16S rRNA spacer region confirmed previous reports of rrn interoperon sequence heterogeneity for StLL, where the spacer region of rrnB encodes a complete tRNA-Isoleucine gene and the rrnA spacer region does not. Together these results suggest that the Australian phytoplasma, StLL, is unique according to the International Organization for Mycoplasmology (IRPCM) recommendations. The novel taxon ‘Ca. Phytoplasma stylosanthis’ is proposed, with the most recent strain from a potato crop in Victoria, Australia, serving as the reference strain (deposited in the Victorian Plant Pathology Herbarium as VPRI 43683).
-
- Proteobacteria
-
-
Solimonas marina sp. nov., isolated from deep seawater of the Pacific Ocean
More LessA taxonomic study was carried out on strain C16B3T, which was isolated from deep seawater of the Pacific Ocean. The bacterium was Gram-stain-negative, oxidase- and catalase- positive and rod-shaped. Growth was observed at salinities of 0–8.0 % and at temperatures of 10–45 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain C16B3T belonged to the genus Solimonas , with the highest sequence similarity to Solimonas terrae KIS83-12T (97.2 %), followed by Solimonas variicoloris MN28T (97.0 %) and the other four species of the genus Solimonas (94.5 –96.8 %). The average nucleotide identity and estimated DNA–DNA hybridization values between strain C16B3T and the type strains of the genus Solimonas were 74.05−79.48 % and 19.5–22.5 %, respectively. The principal fatty acids (>5 %) were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c; 20.9 %), iso-C16 : 0 (14.6 %), C16 : 1 ω5c (9.4 %), iso-C12 : 0 (8.4 %), summed feature 2 (C14 : 0 3-OH/iso I-C16 : 1 and C12 : 0 aldehyde; 6.8 %) and C16 : 0 (5.5 %). The G+C content of the chromosomal DNA was 65.37 mol%. The respiratory quinone was determined to be Q-8 (100 %). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, four unidentified aminolipids, six unidentified phospholipids and one unidentified polar lipid. The combined genotypic and phenotypic data show that strain C16B3T represents a novel species within the genus Solimonas , for which the name Solimonas marina sp. nov. is proposed, with the type strain C16B3T (=MCCC 1A04678T=KCTC 52314T).
-
-
-
Algibacillus agarilyticus gen. nov., sp. nov., isolated from the surface of the red algae Gelidium amansii
More LessA novel Gram-stain-negative, strictly aerobic, coccoid and agar-hydrolysing bacterium, designated RQJ05T, was isolated from the marine red algae Gelidium amansii collected from the coastal area of Rizhao, PR China. Cells of strain RQJ05T were approximately 0.8–1.0×1.3–3.0 µm in size and motile by means of a polar flagellum. Growth occurred at 4–33 °C (optimum, 25–30 °C), pH 7.0–8.5 (optimum, pH 7.5–8.0) and in the presence of 1.0–7.0 % (w/v) NaCl (optimum, 2.0–3.0 %). Strain RQJ05T showed oxidase-positive and catalase-negative activities. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain RQJ05T formed a phylogenetic lineage with members of the family Alteromonadaceae and exhibited 16S rRNA gene sequence similarities of 92.6, 91.3, 90.2 and 90.1 % to Catenovulum maritimum Q1T, Catenovulum agarivorans YM01T, Paraphotobacterium marinum NSCS20N07DT and Algicola sagamiensis B-10-31T, respectively. The major cellular fatty acids of strain RQJ05T were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The major polar lipids of strain RQJ05T were phosphatidylethanolamine, phosphatidylglycerol and two aminophospholipids. Strain RQJ05T contained Q-8 as the major respiratory quinone. The genomic DNA G+C content was 39.0 mol%. On the basis of genotypic, phenotypic and phylogenetic evidence, strain RQJ05T is presented as a representative of a novel species in a new genus, for which the name Algibacillus agarilyticus gen. nov., sp. nov. is proposed. The type strain is RQJ05T (=KCTC 62846T=MCCC 1H00352T).
-
-
-
Acinetobacter lanii sp. nov., Acinetobacter shaoyimingii sp. nov. and Acinetobacter wanghuae sp. nov., isolated from faeces of Equus kiang
Six aerobic, non-motile, non-haemolytic, Gram-stain-negative, oxidase-negative strains (185T, 187, 323-1T, 194, dk386T and dk771) were recovered from different faecal samples of Equus kiang on the Qinghai–Tibet Plateau. In the 16S rRNA gene sequences, one strain pair, 185T/187, shared highest similarity to Acinetobacter equi 114T (97.9 %), and the other two (323-1T/194 and dk771T/dk386) to Acinetobacter harbinensis CGMCC 1.12528T (98.6 and 97.0 %, respectively). Phylogenomic tree analysis showed that these six strains formed three separate clades in the genus Acinetobacter . Digital DNA–DNA hybridization values of each pair of the isolates with all members of the genus Acinetobacter were far below 70 %. The main cellular fatty acids of all six strains were C18 : 1 ω9c, C16 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). Q-9 was the predominant respiratory quinone for strains 185T, 323-1T and dk386T. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Based on the genotypic, phenotypic and biochemical analyses, these six strains represent three novel species of the genus Acinetobacter , for which the names Acinetobacter lanii sp. nov., Acinetobacter shaoyimingii sp. nov. and Acinetobacter wanghuae sp. nov. are proposed. The type strains are 185T (=CGMCC 1.13636T=JCM 33607T), 323-1T (=CGMCC 1.13940T=JCM 33608T) and dk386T (=CGMCC 1.16589T=JCM 33592T), respectively.
-
-
-
Gluconacetobacter dulcium sp. nov., a novel Gluconacetobacter species from sugar-rich environments
A phylogenomic analysis based on 107 single-copy core genes revealed that three strains from sugar-rich environments, i.e. LMG 1728T, LMG 1731 and LMG 22058, represented a single, novel Gluconacetobacter lineage with Gluconacetobacter liquefaciens as nearest validly named neighbour. OrthoANIu and digital DNA–DNA hybridization analyses among these strains and Gluconacetobacter type strains confirmed that the three strains represented a novel Gluconacetobacter species. Biochemical characteristics and MALDI-TOF mass spectra allowed differentiation of this novel species from the type strains of G. liquefaciens and other closely related Gluconacetobacter species. We therefore propose to classify strains LMG 1728T, LMG 1731 and LMG 22058 in the novel species Gluconacetobacter dulcium sp. nov., with LMG 1728T (=CECT 30142T) as the type strain.
-
-
-
Donghicola mangrovi sp. nov., a member of the family Rhodobacteraceae isolated from mangrove forest in Thailand
Two novel Gram-stain-negative, rod-shaped and non-motile bacterial strains, designated B5-SW-15T and C2-DW-16, were isolated from water collected in mangrove forests in Ranong Province, Thailand. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains B5-SW-15T and C2-DW-16 belonged to the genus Donghicola and were most closely related to Donghicola tyrosinivorans DSM 100212T (98.2 and 98.1 %, respectively) and Donghicola eburneus DSM 29127T (97.7 and 97.6 %, respectively). The average nucleotide identity and digital DNA–DNA hybridization values between strain B5-SW-15T, strain C2-DW-16 and related species were 95.8 and 71.6 % (to strain C2-DW-16), 76.8 and 21.3 % (to D. tyrosinivorans DSM 100212T) and 80.3 and 24.2 % (to D. eburneus DSM 29127T), respectively. The predominant cellular fatty acids (>5 %) were summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c), C16 : 0 and C12 : 1 3-OH. Ubiquinone Q-10 was the sole respiratory quinone. DNA G+C contents of the isolates were 61.0 and 61.2 mol% based on whole genome sequences. Strains B5-SW-15T and C2-DW-16 contained aminolipid, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids. On the basis of the results from phenotypic, chemotaxonomic and phylogenetic analyses, strains B5-SW-15T and C2-DW-16 constitute a novel species of the genus Donghicola in the family Rhodobacteraceae for which the name Donghicola mangrovi sp. nov. is proposed. The type strain is B5-SW-15T (=BCC 56522T=TBRC 9562T=KCTC 72743T).
-
-
-
Oricola thermophila sp. nov., a marine bacterium isolated from tidal flat sediment and emended description of the genus Oricola Hameed et al. 2015
More LessA Gram-stain-negative, facultatively anaerobic, rod-shaped (1.8–4.4×0.5–0.7 µm) and motile marine bacterium, designated as MEBiC13590T, was isolated from tidal flat sediment sampled at Incheon City, on the west coast of the Republic of Korea. The 16S rRNA gene sequence analysis revealed that strain MEBiC13590T showed high similarity to Oricola cellulosilytica CC-AMH-0T (98.2 %), followed by Oceaniradius stylonematis StC1T (97.5 %); however, it clustered with Oricola cellulosilytica . The phylogenomic tree inferred by the up-to-date bacterial core gene set suggested that strain MEBiC13590T shared a phyletic line with Oricola cellulosilytica . Average nucleotide identity and digital DNA–DNA hybridization values (75.0 and 19.3 %, respectively) between strain MEBiC13590T and Oricola cellulosilytica CC-AMH-0T were below the respective species delineation cutoffs. Growth was observed at 22–50 °C (optimum, 45 °C), at pH 5–9 (optimum, pH 7) and with 1–6 % (optimum, 3 %) NaCl. The predominant cellular fatty acids were C16 : 0 (7.6 %), C18 : 0 (12.2 %), 11-methyl C18 : 1 ω7c (5.7 %), C19 : 0 cyclo ω6c and summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c; 38 %). The DNA G+C content was 63.5 mol%. The major respiratory quinone was Q-10. Several phenotypic characteristics such as growth temperature, oxygen requirement, enzyme activities of urease, gelatinase, lipase (C14), α-chymotrypsin, acid phosphatase, β-galactosidase, β-glucosidase etc. differentiate strain MEBiC13590T from Oricola cellulosilytica CC-AMH-0T. Based on this polyphasic taxonomic data, strain MEBiC13590T should be classified as representing a novel species in the genus Oricola for which the name Oricola thermophila sp. nov. is proposed . The type strain is MEBiC13590T (=KCCM 43313T=JCM 33661T).
-
-
-
Sulfurimonas indica sp. nov., a hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a hydrothermal sulfide chimney in the Northwest Indian Ocean
More LessA novel mesophilic, hydrogen- and sulfur-oxidizing bacterium, designated strain NW8NT, was collected from a sulfide chimney at the deep-sea hydrothermal vent on the Carlsberg Ridge of the Northwest Indian Ocean. The cells were Gram-stain-negative, motile, short rods with a single polar flagellum. The temperature, pH and salinity ranges for growth of strain NW8NT were 4–40 °C (optimum, 33 °C), pH 4.5–7.5 (optimum, pH 5.5) and 340–680 mM NaCl (optimum, 510 mM). The isolate was an obligate chemolithoautotroph capable of growth using hydrogen, thiosulfate, sulfide or elemental sulphur as the sole energy source, carbon dioxide as the sole carbon source and molecular oxygen as the sole electron acceptor. The major cellular fatty acids of strain NW8NT were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The total size of its genome was 2 093 492 bp and the genomic DNA G+C content was 36.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and core genes showed that the novel isolate belonged to the genus Sulfurimonas and was most closely related to Sulfurimonas paralvinellae GO25T (97.4 % sequence identity). The average nucleotide identity and DNA–DNAhybridization values between strain NW8NT and S. paralvinellae GO25T was 77.8 and 21.1 %, respectively. Based on the phylogenetic, genomic and phenotypic data presented here, strain NW8NT represents a novel species of the genus Sulfurimonas , for which the name Sulfurimonas indica sp. nov. is proposed, with the type strain NW8NT (=MCCC 1A13988T=KTCC 15780T).
-
-
-
Halomonas azerbaijanica sp. nov., a halophilic bacterium isolated from Urmia Lake after the 2015 drought
More LessA novel, slightly halophilic bacterium, designated TBZ202T, was isolated from water of Urmia Lake, in the Azerbaijan region of north-west Iran. The strain was facultatively anaerobic, Gram-stain-negative, rod-shaped and motile. Colonies were creamy, circular, convex and shiny. It grew at NaCl concentrations of 0–12 % (w/v) (optimum 3–5 % w/v), at temperatures of 20–45 °C (optimum 30 °C) and at pH 5.0–10.0 (optimum pH 7.0). Based on the 16S rRNA gene sequence, strain TBZ202T belongs to the genus Halomonas in the Halomonadaceae and the most closely related species are Halomonas gudaonensis CGMCC 1.6133T (98.6 % similarity), Halomonas ventosae Al12T (96.8 %) and Halomonas rambilicola RS-16T (96.6%). The G+C content was 67.9 % and the digital DNA–DNA hybridization and average nucleotide identity values with H. gudaonensis were 35.8 and 83.8 %, respectively, indicating that the isolate differs from all species described. The major fatty acids were C18 : 1 ω7c, C16 : 0 and C16 : 1 ω7c. The only respiratory quinone detected was Q-9 and polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, aminophospholipid and three unknown phospholipids. On the basis of a polyphasic taxonomic analysis, the isolate is considered to represent a novel species of the genus Halomonas , for which the name Halomonas azerbaijanica sp. nov. is proposed. The type strain is TBZ202T (=KCTC 62817T=CECT 9693T).
-
-
-
Pseudomonas allii sp. nov., a pathogen causing soft rot of onion in Japan
More LessSix phytopathogenic bacterial strains, MAFF 301512, MAFF 301513, MAFF 301514T, MAFF 301515, MAFF 301516 and MAFF 301517, were isolated from soft rot lesions of onion (Allium cepa L.) in Japan. The cells were Gram-reaction-negative, aerobic, non-spore-forming, motile with one or two polar flagella and rod-shaped. Analysis of their 16S rRNA gene sequences showed that they belong to the genus Pseudomonas , with the highest similarities to Pseudomonas poae DSM 14936T (99.86 %), Pseudomonas simiae OLiT (99.85 %), Pseudomonas trivialis DSM 14937T (99.79 %) and Pseudomonas extremorientalis KMM 3447T (99.79 %). Their genomic DNA G+C content was 60.9 mol% and the major fatty acids (>5 % of the total fatty acids) present were C16 : 0, summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c /C18 : 1 ω6c) and C17 : 0 cyclo. Phylogenetic and phylogenomic analyses based on the rpoD gene and whole genome sequences, respectively, demonstrated that the strains belong to the Pseudomonas fluorescens subgroup, but form a monophyletic and robust clade, with Pseudomonas azotoformans as their neighbour. Between the strains and P. azotoformans , the average nucleotide identity scores were 95.63–95.70 %, whereas the digital DNA–DNA hybridization scores of the strains against their closest relatives, including P. azotoformans , were 65.4 % or less, which are lower than the 70 % cut-off for prokaryotic species delineation. The strains were differentiated from their closest relatives by phenotypic characteristics, pathogenicity in onion and cellular fatty acid composition. The phenotypic, chemotaxonomic and genotypic data showed that the strains represent a novel Pseudomonas species, proposed to be named Pseudomonas allii sp. nov., with MAFF 301514T (=ICMP 23680T) being the type strain.
-
-
-
Kineobactrum salinum sp. nov., isolated from marine sediment
More LessStrain M2T, isolated from marine sediment collected at Jeju Island, was an aerobic, Gram-stain-negative, oxidase- and catalase-positive, motile, rod-shaped bacterium that formed circular, raised, yellow colonies. Strain M2T grew at 15–42 °C, pH 5.5–9.0 and with 1–9 % (w/v) NaCl. Phylogenetic analysis based on its 16S rRNA gene sequences indicated that strain M2T was closely related to Kineobactrum sediminis F02T (98.0 % sequence similarity). Ubiquinone-8 was determined to be the sole respiratory quinone. Summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c) were identified as the predominant fatty acids. The DNA G+C content and digital DNA–DNA relatedness between strain M2T and K. sediminis F02T were 60.7 mol% and 19.5 %, respectively. Phosphatidylglycerol and phosphatidylethanolamine were identified as the major polar lipids. Thus, polyphasic characterization revealed that strain M2T represents a novel species in the genus Kineobactrum , for which the name Kineobactrum salinum sp. nov. is proposed. The type strain is M2T (=KCTC 72815T=VTCC 910108T).
-
-
-
Poseidonibacter parvus sp. nov., isolated from a squid
More LessA Gram-stain-negative, aerobic, short rod-shaped, motile, brownish-coloured bacterium, termed strain LPB0137T, was isolated from a squid. Its cells could grow weakly on marine agar 2216 with 0.04 % 2,3,5-triphenyl tetrazolium chloride (TTC). Each cell of strain LPB0137T has a circular chromosome with a length of 2.87 Mb and 27.7 mol% DNA G+C content. The genome includes 2698 protein-coding genes and six rRNA operons. In 16S rRNA gene sequence trees, strain LPB0137T formed a robust monophyletic clade with Poseidonibacter antarcticus SM1702T with a sequence similarity of 98.3 %. However, the average nucleotide identity and in silico DNA–DNA hybridization values between the two type strains were low (83.9 and 28.1 %, respectively). The overall phenotypic and genomic features of strain LPB0137T supported its assignment to the genus Poseidonibacter . However, the relatively low gene and genome sequence similarity between this strain and other type strains of the genus Poseidonibacter and several enzymatic characteristics indicated the taxonomic novelty of the isolated strain as a new member of the genus Poseidonibacter . Therefore, based on the phylogenetic and phenotypic characteristics of LPB0137T, we proposed a novel species of the genus Poseidonibacter for it, with the name Poseidonibacter parvus sp. nov. The type strain of this new species is thus LPB0137T (=KACC 18888T=JCM 31548T).
-
-
-
Legionella septentrionalis sp. nov., isolated from aquatic environments in the northern PR China
Four strains (km711T, km714, km542 and km524), representing a novel Legionella species, were isolated from aquatic environments in northern PR China. Cells were Gram-stain-negative, rod-shaped, microaerobic, motile and growth depended on l-cysteine. They grew at 25‒42 °C (optimum, 35‒37 °C) and could tolerate up to 1.5 % (w/v) NaCl (optimum, 0.5 %). The major fatty acids (>5 %) of the type strain km711T were C17 : 0 anteiso, C15 : 0 anteiso, iso-C16 : 0 and C16 : 1 ω7c and/or iso-C15 : 0 2OH. The pairwise comparison values were <96.1 % for 16S rRNA gene sequences, 23.3‒28.7 % interspecies variation for mip gene sequences, <93.6 % average nucleotide identity and <72.8 % average amino acid identity between these four strains and related type strains within the genus Legionella . The phylogenetic tree based on the four concatenated genes (16S rRNA, mip, rpoB and rnpB) and protein-concatamer tree based on concatenation of 21 protein markers both revealed that these four strains formed a separate phylogenetic branch cluster within the genus Legionella . The results of phenotypic and genotypic features suggest that these four strains represent a novel species of the genus Legionella , for which the name Legionella septentrionalis sp. nov. is proposed (type strain km711T=KCTC 15655T=NBRC 113219T).
-
-
-
Duganella callida sp. nov., a novel addition to the Duganella genus, isolated from the soil of a cultivated maize field
More LessA Gram-negative, rod-shaped bacterium, strain Duganella callida DN04T, was isolated from the soil of a maize field in North Carolina, USA. Based on the 16S rRNA gene sequence, the most similar Duganella species are D. sacchari Sac-22T, D. ginsengisoli DCY83T, and D. radicis Sac-41T with a 97.8, 97.6, or 96.9 % sequence similarity, respectively. We compared the biochemical phenotype of DN04T to D. sacchari Sac-22T and D. zoogloeoides 115T and other reference strains from different genera within the Oxalobacteraceae and while the biochemical profile of DN04T is most similar to D. sacchari Sac-22T and other Duganella and Massilia strains, there are also distinct differences. DN04T can for example utilize turanose, N-acetyl-d-glucosamine, inosine, and l-pyroglutamic acid. The four fatty acids found in the highest percentages were C15 : 0 iso (24.6 %), C15 : 1 isoG (19.4 %), C17 : 0 iso3-OH (16.8 %), and summed feature 3 (C16:1 ⍵7c and/or C16:1 ⍵6c) (12.5 %). We also applied whole genome sequencing to determine if DN04T is a novel species. The most similar AAI (average amino acid identity) score was 70.8 % ( Massilia plicata NZ CP038026T), and the most similar ANI (average nucleotide identity) score was 84.8 % ( D. radicis KCTC 22382T), which indicates that DN04T is a novel species. The genome-to-genome-distance calculation (GGDC) revealed a DDH of 28.3 % to D. radicis KCTC 22382T, which is much lower than the new species threshold. Based on the morphological, phenotypic, and genomic differences, we propose Duganella callida sp. nov. as a novel species within the Duganella genus (type strain DN04T=NRRL B-65552T=LMG 31736T).
-
Volumes and issues
-
Volume 75 (2025)
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)
Most Read This Month
