-
Volume 70,
Issue 3,
2020
Volume 70, Issue 3, 2020
- New Taxa
-
- Bacteroidetes
-
-
Mangrovimonas spongiae sp. nov., a novel member of the genus Mangrovimonas isolated from marine sponge
More LessA taxonomic study was carried out on strain HN-E26T, which was isolated from sponge collected from Yangpu Bay, Hainan, PR China. Cells of strain HN-E26T were Gram-stain-negative, motile by gliding, yellow-pigmented and rod-shaped. The strain could grow at 10–40 °C (optimum, 25 °C), at pH 6.0–9.0 (optimum, pH 7.0) and in 0.5–12 % (w/v) NaCl (optimum, 4–7 %). This isolate was positive for oxidase, catalase, and the hydrolysis of starch, xylan, aesculin and gelatin, but negative for indole production and the reduction of nitrate. Strain HN-E26T shared the highest 16S rRNA gene sequence similarity with Mangrovimonas yunxiaonensis LYYY01T (95.5 %), followed by Formosa spongicola A2T (94.4 %), Meridianimaribacter flavus NH57NT (94.3 %) and Winogradskyella exilis 022-2-26T (94.3 %). The phylogenetic tree based on 16S rRNA gene sequences revealed that strain HN-E26T formed a distinct phylogenetic lineage within the cluster comprising Mangrovimonas yunxiaonensis LYYY01T and ‘ Mangrovimonas xylaniphaga ’ ST2L12T. The dominant fatty acids were iso-C15 : 0 and iso-C15 : 1 G. The major polar lipids comprised phosphatidylethanolamine, three unidentified aminolipids and six unidentified lipids. The respiratory lipoquinone was identified as MK-6. The G+C content of the genomic DNA was 33.9 mol%. Based on the phenotypic and phylogenetic data, strain HN-E26T represents a novel species of the genus Mangrovimonas , for which the name Mangrovimonas spongiae sp. nov. is proposed, with the type strain HN-E26T (=MCCC 1K03326T=LMG 30458T).
-
-
-
Formosa sediminum sp. nov., a starch-degrading bacterium isolated from marine sediment
More LessA novel bacterium, designated strain PS13T, was isolated from marine sediment collected from the coast of Jeju Island. Strain PS13T was a Gram stain-negative, catalase- and oxidase-positive, aerobic, yellow-pigmented, motile by gliding, and rod-shaped bacterium. Strain PS13T grew optimally at 25 °C and pH 8.0 and in the presence of 3 % (w/v) NaCl. Results of phylogenetic analysis based on 16S rRNA gene sequences showed that strain PS13T belonged to the genus Formosa and was closely related to Formosa algae KMM3553T (98.3 % sequence similarity). The DNA–DNA relatedness (17.3–21.8 %) and average nucleotide identity (83.6–84.6 %) values clearly indicated that strain PS13T represents a distinct species of the genus Formosa . The major fatty acids were C15 : 0 iso, C16 : 1 ω6c/C16 : 1 ω7c and C15 : 1 iso G. The genomic DNA G+C content of the strain PS13T was 32.2 mol%. On the basis of polyphasic characteristics, it is suggested that strain PS13T be assigned to the genus Formosa as the type strain of a novel species, for which the name Formosa sediminum PS13T (=KCCM 43301T=CECT 9918T) sp. nov. is proposed.
-
- Firmicutes and Related Organisms
-
-
Bacillus fungorum sp. nov., a bacterium isolated from spent mushroom substrate
More LessA facultatively anaerobic, Gram-stain-positive, spore-forming Bacillus strain, 17-SMS-01T, isolated from spent mushroom substrate in the Fangshan District, Beijing, PR China, was initially identified as a Bacillus cereus group species based on 16S rRNA gene sequences. Strain 17-SMS-01T had the highest sequence similarities to Bacillus wiedmannii FSL W8-0169T (99.9 %), Bacillus albus N35-10-2T (99.9 %), Bacillus luti TD41T (99.9 %) and Bacillus proteolyticus TD42T (99.9 %). However, the average nucleotide identity (ANI) and digital DNA–DNA hybridization (DDH) values between strain 17-SMS-01T and the most closely related species were less than the previously proposed cut-off values of 96 % (ANI) and 70 % (DDH) for differentiating species within the genus, suggesting that this strain represents a novel Bacillus group species. The fatty acid profile of strain 17-SMS-01T, which showed a predominance of iso-C15 : 0 and anteiso-C15 : 0, supported the allocation of the strain to the genus Bacillus . The predominant menaquinone was MK-7 (100%). The major polar lipids were diphosphatidylglycerol, phosphatidyl ethanolamine, phosphatidyl glycerol, an unidentified aminophospholiped and unidentified lipids. The DNA G+C content of the novel strain was 35.0 mol%. The results of physiological and biochemical tests also allowed the phenotypic differentiation of strain 17-SMS-01T from the most closely related recognized species. On the basis of the phylogenetic and phenotypic evidence, strain 17-SMS-01T represents a novel Bacillus species, for which the name Bacillus fungorum sp. nov. is proposed. Type strain of the novel species is 17-SMS-01T (=MCCC 1K03483T=KCTC 33949T).
-
-
-
Paenibacillus ottowii sp. nov. isolated from a fermentation system processing bovine manure
More LessStrain MS2379T was isolated from a pasteurized solution sample from a predominantly anaerobic fermentation system processing bovine manure in Pilot Point, Texas. Phylogenetic analyses based on both 16S rRNA gene and rpoB gene sequences showed that MS2379T was most closely related to Paenibacillus polymyxa (DSM 36T), P. jamilae (DSM 13815T), and P. peoriae (DSM 8320T), yet DNA–DNA relatedness through DNA–DNA hybridization revealed only 22.6, 32.0 and 24.7 % relatedness to these three species respectively. Rod-shaped cells of strain MS2379T are Gram-stain variable with sub-terminal, ellipsoidal, deforming endospores. The peptidoglycan contains meso-diaminopimelic acid (mDAP) and the predominant fatty acids are anteiso-C15 : 0 (61.9 %) and anteiso-C17 : 0 (11.6 %), confirming that strain MS2379T has diagnostic features of other Paenibacillus species. The G+C content of MS2379T is 45.9 mol%. Fermentation of glucose yields acid and gas end-products. The polar lipids found were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and glycolipids, but also included some unidentified lipids, aminolipids, aminoglycolipid, and phosphatidylmethylethanolamine. The growth range of MS2379T was observed from 10–45 °C with optimal growth temperature at 30 °C. Growth was observed between pH 6–10 and up to 3 % NaCl. Unlike the most closely related Paenibacillus species, strain MS2379T was negative in the Voges-Proskauer reaction. Nucleic acid, chemotaxonomic and biochemical features support the distinctiveness of strain MS2379T. Thus, strain MS2379T represents a novel species of the genus Paenibacillus for which the name Paenibacillus ottowii sp. nov. is proposed with the type strain MS2379T (=DSM 107750T=ATCC TSD-165T).
-
-
-
Bacillus caeni sp. nov., isolated from mangrove sediment
More LessA Gram-variable, aerobic, motile and irregular rod-shaped bacterium, designated HB172195T, was isolated from a mangrove sediment sample collected from Bamen Bay mangrove forest, China. Cells of the strain were oxidase-negative but positive for catalase and nitrate reduction. Strain HB172195T was found to grow at 15–50 °C (optimum, 25–40 °C), pH 5.0–9.0 (optimum, pH 7.0) and in 1.0–11.0 % (w/v) NaCl (optimum, 3–6 %). Chemotaxonomic analysis indicated that the sole respiratory quinone was MK-7 and the cell-wall peptidoglycan was meso-diaminopimelic acid. The predominant cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and C16 : 1ω7c alcohol. The major polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and an unidentified phospholipid. The genomic DNA G+C content was 40.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain was closely related to Bacillus hwajinpoensis SW-72T (96.3%), Bacillus algicola KMM 3737T (96.2 %) and Bacillus haemicentroti JSM 076093T (95.5 %). Based on polyphasic taxonomic characterization, strain HB172195T is considered to represent a novel species, for which the name Bacillus caeni sp. nov. is proposed. The type strain is HB172195T (=CGMCC 1.16730T=JCM 33411T).
-
-
-
Lactobacillus mulieris sp. nov., a new species of Lactobacillus delbrueckii group
One Gram-stain-positive, non-motile, non-spore-forming, catalase-negative, and coccobacilli-shaped strain, designated c10Ua161MT, was isolated from a urine sample from a reproductive-age healthy woman. Comparative 16S rRNA gene sequence analysis indicated that strain c10Ua161MT belonged to the genus Lactobacillus . Phylogenetic analysis based on pheS and rpoA gene sequences strongly supported a clade encompassing strains c10Ua161MT and eight other strains from public databases, distinct from currently recognized species of the genus Lactobacillus. In silico Average Nucleotide Identity (ANI) and Genome-to-Genome Distance Calculator (GGDC), showed 87.9 and 34.3 % identity to the closest relative Lactobacillus jensenii , respectively. The major fatty acids of strain c10Ua161MT were C18 : 1ω9c (65.0%), C16 : 0 (17.8%), and summed feature 8 (10.2 %; comprising C18 : 1ω7c, and/or C18 : 1ω6c). The DNA G+C content of the strains is 34.2 mol%. On the basis of data presented here, strain c10Ua161MT represents a novel species of the genus Lactobacillus , for which the name Lactobacillus mulieris sp. nov. is proposed. The type strain is c10Ua161MT (=CECT 9755T=DSM 108704T).
-
-
-
Weissella muntiaci sp. nov., isolated from faeces of Formosan barking deer (Muntiacus reevesi)
A Gram-stain-positive strain, 8 H-2T, was isolated from faeces of Reeves’ muntjac (Muntiacus reevesi) barking deer in Taiwan. Cells of the strain were short rod-shaped, non-motile, non-haemolytic, asporogenous, facultatively anaerobic, heterofermentative and did not exhibit catalase and oxidase activities. Comparative analyses of 16S rRNA, pheS and dnaA gene sequences demonstrated that the novel strain was a member of the genus Weissella . On the basis of 16S rRNA gene sequence similarities, the type strains of Weissella oryzae (99.2 %), Weissella confusa (97.8 %), Weissella cibaria (97.6 %) and Weissella soli (97.3 %) were the closest neighbours to strain 8 H-2T. The concatenated housekeeping gene sequence (pheS and dnaA) similarities of 8 H-2T to closely related type strains were 72.5–84.9 %, respectively. The genomic DNA G+C content was 40.5 mol%. The average nucleotide identity and digital DNA–DNA hybridization values with these type strains were 70.2–75.4% and 25.1–30.1 %, respectively. Phenotypic and genotypic test results demonstrated that strain 8 H-2T represents a novel species belonging to the genus Weissella , for which the name Weissella muntiaci sp. nov. is proposed. The type strain is 8 H-2T (=BCRC 81133T=NBRC 113537T).
-
-
-
Leuconostoc litchii sp. nov., a novel lactic acid bacterium isolated from lychee
A novel lactic acid bacterium, strain MB7T, was isolated from lychee in Taiwan. MB7T is Gram-staining-positive, catalase-negative, non-motile, non-haemolytic, facultatively anaerobic, coccoid-shaped, heterofermentative and mainly produces d-lactic acid from glucose. Comparative analysis of 16S rRNA, pheS and rpoA gene sequences has demonstrated that the novel strain represented a member of the genus Leuconostoc . 16S rRNA gene sequencing results indicated that MB7T had the same sequence similarity of 99.25 % to four type strains of members of the genus Leuconostoc : Leuconostoc mesenteroides subsp. dextranicum DSM 20484T, Leuconostoc mesenteroides subsp. jonggajibkimchii DRC 1506T, Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293T and Leuconostoc suionicum DSM 20241T. Additionally, high 16S rRNA sequence similarities were also observed with Leuconostoc mesenteroides subsp. cremoris ATCC 19254T (99.12 %) and Leuconostoc pseudomesenteroides NRIC 1777T (98.69 %). When comparing the genomes of these type strains, the average nucleotide identity values and digital DNA–DNA hybridization values of MB7T with these type strains were 76.57–80.53 and 22.0–22.6 %, respectively. MB7T also showed different phenotypic characteristics to other most closely related species of the genus Leuconostoc , such as carbohydrate metabolizing ability, halotolerance and growth at various pHs. On the basis of phenotypic and genotypic properties, strain MB7T represents a novel species belonging to the genus Leuconostoc , for which the name Leuconostoc litchii sp. nov. is proposed. The type strain is MB7T (=BCRC 81077T=NBRC 113542T).
-
-
-
Bacillus miscanthi sp. nov., a alkaliphilic bacterium from the rhizosphere of Miscanthus sacchariflorus
More LessA novel bacterial strain, designated AK13T (=KACC 21401T=DSM 109981T), was isolated from the rhizosphere of Miscanthus sacchariflorus. Strain AK13T was found to be an aerobic, Gram-stain–positive, endospore-forming and rod-shaped bacterium. It formed yellow circular colonies with smooth convex surfaces. The genomic DNA G+C content of strain AK13T was estimated to be 40 mol%. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that this strain was most closely related to Bacillus lehensis MLB2T (99.4 %), Bacillus oshimensis K11T (98.8 %) and Bacillus patagoniensis PAT 05T (96.6 %). The average nucleotide identity values between strain AK13T and B. lehensis MLB2T, B. oshimensis K11T and B. patagoniensis PAT 05T were 90.93, 91.05 and 71.87 %, respectively, with the digital DNA–DNA hybridization values of 42.7, 42.6 and 18.8 %, respectively. Cells grew at 5–40 °C (optimum, 28–35 °C), pH 6.5–13 (optimum, pH 8–9) and in the presence of 0–13.0 % (w/v) NaCl (optimum, 1 %). The cell wall of strain AK13T contained meso-diaminopimelic acid, and the major isoprenoid quinone was MK-7. Results of fatty acid methyl ester analysis revealed that iso-C15 : 0 was the predominant cellular fatty acid. Two-dimensional thin-layer chromatography analysis indicated that the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and glycolipid. The genotypic and phenotypic characteristics suggested that strain AK13T represented a novel species of the genus Bacillus , and thus the name Bacillus miscanthi sp. nov. is proposed.
-
-
-
Paenibacillus paridis sp. nov., an endophytic bacterial species isolated from the root of Paris polyphylla Smith var. yunnanensis
More LessA Gram-reaction-positive, endospore-forming and rod-shaped bacterial strain, designated py1325T, was isolated from the root of Paris polyphylla Smith var. yunnanensis collected from Yunnan Province, PR China, and subjected to a polyphasic taxonomic characterization. It grew optimally with 0–1 % NaCl (w/v), at pH 7 and at 30 °C. The major respiratory quinone was MK-7 and the diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major cellular fatty acid was anteiso-C15 : 0. The polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, two unidentified phospholipids and two unidentified lipids. The results of 16S rRNA gene sequence analysis revealed the highest levels of sequence similarity with respect to Paenibacillus luteus R-3T (99.0 %), Paenibacillus sinopodophylli CCTCC AB 2016047T (97.9 %), Paenibacillus castaneae DSM 19417T (97.5 %) and Paenibacillus endophyticus LMG 27297T (97.2 %). The digital DNA–DNA hybridization and average nucleotide identity values between py1325T and these species ranged 20.6–53.3 % and 79.9–93.6 %. The G+C content of the genomic DNA was 47.7 mol%. According to the phylogenetic, phenotypic and chemotaxonomic evidence, strain py1325T clearly represents a novel species of the genus Paenibacillus , for which the name Paenibacillus paridis sp. nov. is proposed. The type strain is py1325T (=CCTCC AB 2015220T=LMG 29068T).
-
-
-
Psychrobacillus glaciei sp. nov., a psychrotolerant species isolated from an Antarctic iceberg
More LessWe performed taxonomic studies on a psychrotolerant strain, designated PB01T, isolated from an Antarctic iceberg. The cells of strain PB01T were Gram-stain-positive, strictly aerobic, white–yellow and rod-shaped. The results of 16S rRNA gene sequence analysis revealed that strain PB01T was closely related to Psychrobacillus psychrodurans DSM 11713T (99.19 % similarity), Psychrobacillus psychrotolerans DSM 11706T (98.91 %) and Psychrobacillus insolitus DSM 5T (98.85 %). Despite high 16S rRNA gene sequence similarity, the degrees of DNA–DNA relatedness between strain PB01T and its three closest phylogenetic neighbours were 62.4±7.3 % for P. psychrodurans DSM 11713T, 61.1±5.4 % for P. psychrotolerans DSM 11706T and 56.1±6.9 % for P. insolitus DSM 5T. The predominant cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0 and C16 : 1ω7с-OH. Menaquinone-8 was the major respiratory quinone, and phosphatidylethanolamine was the major polar lipid. The DNA G+C content of strain PB01T calculated from the complete genome sequence was 36.0 mol%. Based on the phenotypic, chemotaxonomic, genomic and phylogenetic data obtained in the present study, we conclude that strain PB01T represents a novel species of the genus Psychrobacillus , for which we propose the name Psychrobacillus glaciei sp. nov. The type strain is PB01T (=CECT 9792T=KCTC 43041T).
-
-
-
Vagococcus silagei sp. nov., isolated from brewer’s grain used to make silage in Taiwan
A Gram-stain-positive, coccus- or oval-shaped, non-motile, haemolytic, asporogenous, catalase- and oxidase-negative, and facultatively anaerobic strain, 2B-2T, was isolated from a brewer’s grain used to make silage in Taiwan. Comparative analyses of 16S rRNA, hsp60 and pheS gene sequences demonstrated that strain 2B-2T was a member of the genus Vagococcus . On the basis of 16S rRNA gene sequence similarity, the type strains of Vagococcus teuberi (98.4 % similarity), Vagococcus carniphilus (98.4 %), Vagococcus martis (98.2 %), Vagococcus penaei (98.2 %) and Vagococcus fluvialis (98.0 %) were the closest neighbours to this novel strain. The similarity levels of concatenated housekeeping gene sequences (hsp60 and pheS) between strain 2B-2T and these closely related species ranged from 84.5 to 88.0 %. The average nucleotide identity and in silico DNA–DNA hybridization values between strain 2B-2T and its closest relatives were lower than 72.9 and 21.6 %, respectively. The DNA G+C content was 34.7 mol%. Phenotypic and genotypic features demonstrated that strain 2B-2T represents a novel species of the genus Vagococcus , for which the name Vagococcus silagei sp. nov. is proposed. The type strain is 2B-2T (=BCRC 81132T=NBRC 113536T).
-
-
-
Description of Paenibacillus tepidiphilus sp. nov., isolated from a tepid spring
China is a hotspot for hot springs and during microbial diversity analysis of Tengchong hot spring, Yunnan province, south-west PR China, two strains designated SYSU G01001T and SY-13 were isolated. SYSU G01001T and SY-13 were Gram-stain-positive, motile and spore-forming. Colonies were white, circular, raised and punctiform. SYSU G01001T and SY-13 grew at pH 6.0–9.0 (optimum pH 8.0) and at 23–37 °C (optimum 28 °C). The 16S rRNA gene sequence similarity between SYSU G01001T and SY-13 was 99.6 % but these strains shared low sequence similarity with Paenibacillus azotifigens (97.5 %) indicating that they represented a novel species. On the basis of the results, SYSU G01001T was selected for further investigations and SY-13 was considered to represent a second strain of the species. The cell wall peptidoglycan of SYSU G01001T was meso-2,6-diaminopimelic acid and MK-7 was the only respiratory quinone. The polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), two unidentified aminolipids (AL), two unidentified amino phospholipids (APL), an unidentified phospholipid (PL) and an unidentified polar lipid (L). The G+C content of the genomic DNA was 53.9 mol%. The average nucleotide identity (ANIb and ANIm) values between SYSU G01001T and Paenibacillus azotifigens LMG 29963T were below the cut-off level (95–96 %) recommended as the average nucleotide identity (ANI) criterion for interspecies identity. On the basis of the above results strain SYSU G01001T represents a novel species of the genus Paenibacillus , for which the name Paenibacillus tepidiphilus sp. nov. is proposed. The type strain is SYSU G01001T (=KCTC 33952T=CGMCC 1.13870T).
-
-
-
Blautia faecicola sp. nov., isolated from faeces from a healthy human
An obligately anaerobic, Gram-stain-positive, non-motile and coccoid- or oval-shaped bacterium, designated strain KGMB01111T, was isolated from faeces from a healthy Korean. Comparative analysis of 16S rRNA gene sequences indicated that KGMB01111T was closely related to Ruminococcus gauveauii CCRI-16110T (93.9 %) and Blautia stercoris GAM6-1T (93.7 %), followed by Clostridium nexile DSM 1787T (93.5 %), Blautia producta ATCC 27340T (93.4 %), Blautia hydrogenotrophica DSM 10507T (93.1 %) and Blautia coccoides ATCC 29236T (93.1 %) within the family Lachnospiraceae ( Clostridium rRNA cluster XIVa). Phylogenetic analysis based on the 16S rRNA gene sequences indicated that KGMB01111T formed a separate branch with species in the genus Blautia . The major cellular fatty acids (>10.0 %) were C16 : 0 and C18 : 1 cis 9 dimethyl acetal (DMA), and the major polar lipids were aminophospholipids and lipids. KGMB01111T contained meso-diaminopimelic acid in cell-wall peptidoglycan. The predominant end product of fermentation produced by KGMB01111T was acetic acid. Based on the whole-genome sequence, the DNA G+C content of the isolate was 44.7 mol%. On the basis of the phenotypic, chemotaxonomic and phylogenetic characteristics, KGMB01111T represents a novel species within the genus Blautia for which the name Blautia faecicola sp. nov. is proposed. The type strain is KGMB01111T (=KCTC 15706T=DSM 107827T).
-
-
-
Calorimonas adulescens gen. nov., sp. nov., an anaerobic thermophilic bacterium utilizing methoxylated benzoates
More LessA novel anaerobic, thermophilic bacterium (strain A05 MBT) was isolated from Daginsky thermal springs (Sakhalin, Russia) on 2-methoxybenzoate as a substrate. Cells of the strain were motile long rods, 3.0–5.0 µm in length and 0.5–0.6 µm in diameter. The temperature range for growth was 47–68 °C, with an optimum at 60 °C. The pH range for growth was 4.5–8.0, with an optimum at pH 5.5–6.0. Strain A05 MBT did not require NaCl for growth. The strain utilized methoxylated aromatic compounds (2-methoxybenzoate and 3,4-dimethoxybenzoate), a number of carbohydrates (glucose, fructose, mannose, trehalose, xylose, sucrose, galactose, ribose, maltose, raffinose, lactose, cellobiose and dextrin) and proteinaceous substrates (yeast extract, beef extract, peptone and tryptone). The end products of glucose fermentation were acetate, ethanol and CO2. The DNA G+C content of strain A05 MBT was 40.2 mol% (whole-genome analysis). 16S rRNA gene sequence analysis revealed that strain A05MBT belongs to the order Thermoanaerobacterales (phylum Firmicutes ). The closest relative of strain A05 MBT was Caloribacterium cisternae (94.3 % 16S rRNA gene sequence similarity). Based on the phenotypic, genotypic and phylogenetic characteristics of the isolate, strain A05 MBT is considered to represent a novel species of a new genus, for which the name Calorimonas adulescens gen. nov., sp. nov. is proposed. The type strain of Calorimonas adulescens is A05 MBT (=KCTC 15839T=VKM B-3388T).
-
- Other Bacteria
-
-
Leptospira yasudae sp. nov. and Leptospira stimsonii sp. nov., two new species of the pathogenic group isolated from environmental sources
Four spirochetes (F1T, B21, YaleT and AMB6-RJ) were isolated from environmental sources: F1T and B21 from soils of an urban slum community in Salvador (Brazil), YaleT from river water in New Haven, Connecticut (USA) and AMB6-RJ from a pond in a horse farm in Rio de Janeiro (Brazil). Isolates were helix-shaped, aerobic, highly motile and non-virulent in a hamster model of infection. Draft genomes of the strains were obtained and analysed to determine the relatedness to other species of the genus Leptospira . The analysis of 498 core genes showed that strains F1T/B21 and YaleT/AMB6-RJ formed two distinct phylogenetic clades within the ‘Pathogens’ group (group I). The average nucleotide identity (ANI) values of strains F1T/B21 and YaleT/AMB6-RJ to other previously described Leptospira species were below <84 % and <82 %, respectively, which confirmed that these isolates should be classified as representatives of two novel species. Therefore, we propose Leptospira yasudae sp. nov. and Leptospira stimsonii sp. nov. as new species in the genus Leptospira . The type strains are F1T (=ATCC-TSD-163=KIT0259=CLEP00287) and YaleT (=ATCC-TDS-162=KIT0258=CLEP00288), respectively.
-
-
-
Thermus thermamylovorans sp. nov., isolated from a hot spring
A novel thermophilic bacterium, designated CFH 72773T was isolated from the enrichment of a Jinze hot spring sample which was collected from Dientan town, Tengchong county, Yunnan province, south-western PR China. Cells were Gram-stain-negative, aerobic, non-motile, rod-shaped and non-sporulating. The taxonomic position of the strain was investigated by using a polyphasic approach. Growth occurred at 37–75 °C, pH 6.0–8.0 and with 0–2.0 % (w/v) NaCl. Comparison of the 16S rRNA gene sequences indicated the strain represented a member of the genus Thermus and showed close relationships to the type strains Thermus caliditerrae YIM 77925T (96.3 % similarity) and Thermus igniterrae RF-4T (96.2 % similarity). The whole genome of CFH 72773T consisted of 2.25 Mbp and the DNA G+C content was 69.5 mol%. A total of 2262 genes, including a variety of enzymes for chemolithotrophy and anerobic respiration, were predicted. The strain had a unique negative oxidase activity and could hydrolyze starch at high temperature. Furthermore, various genes related to methane, sulfur, fumarate and nitrate metabolism were found, all these indicated that it is worth studying the novel strain. The predominant menaquinone is MK-8. The predominant cellular fatty acids included iso-C15 : 0, iso-C16 : 0 and iso-C17 : 0. The major polar lipids were comprised of aminophospholipid, glycolipid and two phospholipids. On the basis of low ANI values, different phenotypic and chemotaxonomic characters and phylogenetic analysis, we made a proposal that strain CFH 72773T represents a novel member of the genus Thermus , for which the name Thermus thermamylovorans sp. nov. is proposed. The type strain is CFH 72773T (=CCTCC AB2018244T=KCTC 43129T).
-
-
-
Dictyobacter vulcani sp. nov., belonging to the class Ktedonobacteria, isolated from soil of the Mt Zao volcano
More LessAn aerobic, Gram-stain-positive, mesophilic Ktedonobacteria strain, W12T, was isolated from soil of the Mt Zao volcano in Miyagi, Japan. Cells were filamentous, non-motile, and grew at 20–37 °C (optimally at 30 °C), at pH 5.0–7.0 (optimally at pH 6.0) and with <2 % (w/v) NaCl on 10-fold diluted Reasoner’s 2A (R2A) medium. Oval-shaped spores were formed on aerial mycelia. Strain W12T hydrolysed microcrystalline cellulose and xylan very weakly, and used d-glucose as its sole carbon source. The major menaquinone was MK-9, and the major cellular fatty acids were C16 : 1 2-OH, iso-C17 : 0, summed feature 9 (10-methyl C16 : 0 and/or iso-C17 : 1ω9c) and anteiso-C17 : 0. Cell-wall sugars were mannose and xylose, and cell-wall amino acids were d-glutamic acid, glycine, l-serine, d-alanine, l-alanine, β-alanine and l-ornithine. Polar lipids were phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid and an unidentified phospholipid. Strain W12T has a genome of 7.42 Mb with 49.7 mol% G+C content. Nine copies of 16S rRNA genes with a maximum dissimilarity of 1.02 % and 13 biosynthetic gene clusters mainly coding for peptide products were predicted in the genome. Phylogenetic analysis based on both 16S rRNA gene and whole genome sequences indicated that strain W12T represents a novel species in the genus Dictyobacter . The most closely related Dictyobacter type strain was Dictyobacter alpinus Uno16T, with 16S rRNA gene sequence similarity and genomic average nucleotide identity of 98.37 % and 80.00 %, respectively. Herein, we propose the name Dictyobacter vulcani sp. nov. for the type strain W12T (=NBRC 113551T=BCRC 81169T) in the bacterial class Ktedonobacteria .
-
-
-
Rariglobus hedericola gen. nov., sp. nov., belonging to the Verrucomicrobia, isolated from a temperate freshwater habitat
More LessThe bacterial strain 53C-WASEF was isolated from a small freshwater ditch located in Eugendorf, Austria. Phylogenetic reconstructions with 16S rRNA gene sequences and genome based, with amino acid sequences obtained from 105 single copy genes, suggested that the strain represents a new genus and a new species within the family Opitutaceae , which belongs to the class Opitutae of the phylum Verrucomicrobia . Comparisons of the 16S rRNA gene sequence of strain 53C-WASEF with those of related type strains revealed a highest sequence similarity of 93.5 % to Nibricoccus aquaticus and of 92.9 % to Geminisphaera colitermitum . Interestingly, phylogentic trees indicated the latter as being the closest known relative of the new strain. Phenotypic, chemotaxonomic and genomic traits were investigated. Cells were observed to be small, spherical, motile and unpigmented, and grew chemoorganotrophically and aerobically. The respiratory quinone was MK-7, the predominant fatty acids were anteiso-C15 : 0, C16 : 1ω5c and C16 : 0. The identified polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Genome sequencing revealed genes putatively encoding for flagella synthesis and cellulose degradation. The genome size was 4.1 Mbp and the G+C content 60.6 mol%. For the new genus and the new species, we propose the name Rariglobus hedericola gen. nov., sp. nov. (=CIP 111665T=DSM 109123T).
-
-
-
Phragmitibacter flavus gen. nov., sp. nov. a new member of the family Verrucomicrobiaceae
More LessThe Gram-stain-negative, aerobic, non-motile, oxidase- and catalase-positive, rod-shaped yellow-coloured bacterial strain MG-N-17T was isolated from a water sample of Lake Fertő/Neusiedler See (Hungary). Results of phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain forms a distinct linage within the family Verrucomicrobiaceae of the phylum Verrucomicrobia , and its closest relatives are Verrucomicrobium spinosum DSM 4136T (94.38 %) and Roseimicrobium gellanilyticum DC2a-G7T (91.55 %). The novel bacterial strain prefers a weak alkaline environment and grows optimally between 22–28 °C in the absence of NaCl. The major isoprenoid quinones are MK-10, MK-11, MK-12 and MK-9. The major cellular fatty acids are anteiso-C15 : 0, C16 : 0, C16 : 1ω5c and iso-C14 : 0. The polar lipid profile contains phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and four unidentified glycolipids. The assembled draft genome of strain MG-N-17T had 44 contigs with an N50 value 348255 nt, 56.5× genome coverage, total length of 5 910 933 bp and G+C content of 56.9 mol%. Strain MG-N-17T (=DSM 106674T=NCAIM B.02643T) is proposed as the type strain of a new genus and species in the family Verrucomicrobiaceae , for which the name Phragmitibacter flavus gen. nov., sp. nov. is proposed.
-
Volumes and issues
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)
Most Read This Month
