- Volume 69, Issue 2, 2019
Volume 69, Issue 2, 2019
- New Taxa
-
- Firmicutes and Related Organisms
-
-
Trichococcus shcherbakoviae sp. nov., isolated from a laboratory-scale anaerobic EGSB bioreactor operated at low temperature
A new species of the genus Trichococcus , strain Art1T, was isolated from a psychrotolerant syntrophic propionate-oxidizing consortium, obtained before from a low-temperature EGSB reactor fed with a mixture of VFAs (acetate, propionate and butyrate). The 16S rRNA gene sequence of strain Art1T was highly similar to those of other Trichococcus species (99.7–99.9 %) but digital DNA–DNA hybridization values were lower than those recommended for the delineation of a novel species, indicating that strain Art1T is a novel species of the genus Trichococcus . Cells of strain Art1T are non-motile cocci with a diameter of 0.5–2.0 µm and were observed singularly, in pairs, short chains and irregular conglomerates. Cells of Art1T stained Gram-positive and produced extracellular polymeric substances . Growth was optimal at pH 6–7.5 and cells could grow in a temperature range of from −2 to 30 °C (optimum 25–30 °C). Strain Art1T can degrade several carbohydrates, and the main products from glucose fermentation are lactate, acetate, formate and ethanol. The genomic DNA G+C content of strain Art1T is 46.7 %. The major components of the cellular fatty acids are C16 : 1 ω9c, C16 : 0 and C18 : 1 ω9c. Based on genomic and physiological characteristics of strain Art1T, a new species of the genus Trichococcus, Trichococcus shcherbakoviae, is proposed. The type strain of Trichococcus shcherbakoviae is Art1T (=DSM 107162T = VKM B–3260T).
-
-
-
Cohnella faecalis sp. nov., isolated from animal faeces in a karst cave
More LessA Gram-stain-positive, rod-shaped, endospore-forming, motile and aerobic bacterial isolate, designated strain K2E09-144T, was obtained from animal faeces that were collected from a karst cave in Guizhou province, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain K2E09-144T represents a novel member of the genus Cohnella within the family Paenibacillaceae of the phylum Firmicutes . Strain K2E09-144T was phylogenetically closely related to Cohnella nanjingensis D45T (16S rRNA gene sequence similarity 97.0 %). The major cellular fatty acids were anteiso-C15:0, iso-C16:0 and C16 : 0. The major isoprenoid quinone was menaqinone 7 (MK-7). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified phospholipid, four unidentified aminophospholipids, one glycolipid and one unidentified lipid. The isomer type of diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The genome of strain K2E09-144T comprised 6.43 Mb, and encoded 6029 genes in total. The DNA G+C content of the genomic DNA was 53.3 mol%. Based on its phylogenetic, phenotypic and chemotaxonomic characteristics, strain K2E09-144T is considered to represent a novel species of the genus Cohnella , for which the name Cohnella faecalis sp. nov. is proposed. The type strain is K2E09-144T (=CGMCC 1.13587T=NBRC 113454T).
-
- Other Bacteria
-
-
Desikacharya gen. nov., a phylogenetically distinct genus of Cyanobacteria along with the description of two new species, Desikacharya nostocoides sp. nov. and Desikacharya soli sp. nov., and reclassification of Nostoc thermotolerans to Desikacharya thermotolerans comb. nov.
More LessTwo Nostoc-like strains have been isolated, purified, cultured and identified on the basis of the polyphasic approach using morphological, ecological, molecular and phylogenetic methods. Both strains were found to have morphology similar to the genus Nostoc , but clustered strongly in a group distant from the Nostoc sensu stricto clade. Further analysis, using the folded structures of the 16S–23S ITS region revealed strong differences from closely related members of the genus Nostoc . Distinct phylogenetic clustering and strong tree topologies using Bayesian inference, maximum-likelihood and maximum-parsimony methods indicated the need to revisit the taxonomy of the members of this particular clade with a clear need for giving a generic status distinct from the genus Nostoc . In accordance with the International Code of Nomenclature for Algae, Fungi and Plants, the name Desikacharya gen. nov. is proposed for the new genus along with the description of two new species, Desikacharya nostocoides sp. nov. and Desikacharya soli sp. nov., and reclassification of Nostoc thermotolerans to Desikacharya thermotolerans comb. nov.
-
-
-
A novel ‘Candidatus Phytoplasma asteris’ subgroup 16SrI-(E/AI)AI associated with blueberry stunt disease in eastern Canada
Phytoplasmas (‘Candidatus Phytoplasma’ species) are phytopathogenic bacteria vectored by insects and are associated with crop diseases that cause severe yield losses by affecting reproductive tissue development. Infection of northern highbush blueberry plants (Vaccinium corymbosum; Ericaceae) with phytoplasma leads to yield losses by altering plant development resulting in stunting and subsequent plant death. Samples collected from symptomatic blueberry plants in two important blueberry-producing areas in Canada, in the provinces of Québec and Nova Scotia, were analysed for the presence of DNA sequences associated with phytoplasma. Analysis of the 16S rRNA gene sequences demonstrated that the plants were infected with a strain of ‘Candidatus Phytoplasma asteris’, which was previously identified as blueberry stunt phytoplasma (BBS; 16SrI-E). Examination of further bacterial sequences revealed that two distinct 16S rRNA-encoding gene sequences were present in each sample in combination with a single chaperonin-60 (cpn60) sequence and a single rpoperon sequence, suggesting that this strain displays 16S rRNA-encoding gene sequence heterogeneity. Two distinct rrnoperons, rrnE and the newly described rrnAI, were identified in samples analysed from all geographic locations. We propose, based on the sequences obtained, delineating the new subgroup 16SrI-(E/AI)AI, following the nomenclature proposed for heterogeneous subgroups. To our knowledge, this is the first report of a heterogeneous phytoplasma strain affecting blueberry plants and associated with blueberry stunt disease.
-
-
-
Nibricoccus aquaticus gen. nov., sp. nov., a new genus of the family Opitutaceae isolated from hyporheic freshwater
More LessA yellow-coloured, Gram-strain-negative, non-motile, cocci-shaped, strictly aerobic bacterium, designated HZ-65T, was isolated from hyporheic freshwater in the Republic of Korea. Strain HZ-65T grew at 15–37 °C (optimum, 25–30 °C), pH 5.5–9.0 (optimum, pH 7.0) and 0–0.5 % NaCl (w/v; optimum at 0 % NaCl). Phylogenetic analysis based on the 16S rRNA gene showed that strain HZ-65T is a member of family Opitutaceae and is closely related to Opitutus terrae PB90-1T (94.0 % similarity), Cephaloticoccus primus CAG34T (93.0 %), and Cephaloticoccus capnophilus CV41T (92.7 %), while the similarities to other Opitutaceae -type strains were lower than 90.0 %. The DNA G+C content was 62.2 mol% and the quinone present was menaquinone-7. The predominant fatty acids were iso-C14 : 0, anteiso-C15 : 0, C16 : 0, and iso-C16 : 0, representing 70 % of the total fatty acids. The major polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Analysis of the HZ-65T genome revealed the presence of 300 genes that are involved in carbohydrate-active enzymes, which indicates the metabolic potential to degrade polysaccharides. The phenotypic, chemotaxonomic, genetic, and phylogenetic properties suggest that strain HZ-65T represents a novel species in a new genus within the family Opitutaceae, for which the name Nibricoccus aquaticus gen. nov., sp. nov., is proposed. The type strain of Nibricoccus aquaticus is HZ-65T (KACC 19333T=NBRC 112907T).
-
- Proteobacteria
-
-
Aestuariivirga litoralis gen. nov., sp. nov., a proteobacterium isolated from a water sample, and proposal of Aestuariivirgaceae fam. nov.
A Gram-stain-negative, non-motile, short rod and aerobic bacterium, designated strain SYSU M10001T, was isolated from a water sample collected from the coastal region of Pearl River Estuary, Guangdong Province, PR China. Strain SYSU M10001T showed optimal growth at 28 °C, pH 7.0 and in the absence of NaCl. Phylogenetic analyses based on 16S rRNA gene sequences and concatenation of 20 protein markers revealed a distinct lineage for strain SYSU M10001T in the order Rhizobiales . Strain SYSU M10001T showed highest 16S rRNA gene sequence similarities to Hyphomicrobium nitrativorans NL23T (91.1 %) and Hyphomicrobium hollandicum IFAM KB-677T (91.1 %). The respiratory ubiquinone was Q-8. The polar lipids of the strain comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminophospholipid, two unidentified phospholipids and three unidentified lipids. The predominant cellular fatty acids identified were C19 : 0cyclo ω8c, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. The G+C content was determined to be 65.5 % (genome). On the basis of differences in the phenotypic, physiological and biochemical characteristics, and results of the phylogenetic analyses, strain SYSU M10001T is proposed to represent a novel species in a novel genus for which the name Aestuariivirga litoralis gen. nov., sp. nov. The type strain of the type species Aestuariivirga litoralis is SYSU M10001T (=NBRC 112960T=KCTC 52945T). Besides, the distinct phylogenetic lineage and the distinct chemotaxonomic profile among the families in the order Rhizobiales indicated that strain SYSU M10001T should represent a new family for which the name Aestuariivirgaceae fam. nov. is proposed.
-
-
-
Klebsiella huaxiensis sp. nov., recovered from human urine
Yiyi Hu, Li Wei, Yu Feng, Yi Xie and Zhiyong ZongA strain of a member of the genus Klebsiella , WCHKl090001, was recovered from a human urine sample in PR China in 2017. Phylogenetic analysis based on gyrA and rpoB housekeeping genes revealed that the strain was distinct from any previously described species of the genus Klebsiella though it was clustered with the Klebsiella oxytoca phylogroup, including Klebsiella grimontii, Klebsiella michiganensis and Klebsiella oxytoca. The whole-genome sequence of strain WCHKl090001 has an up to 87.18 % average nucleotide identity with those of type strains of all known species of the genus Klebsiella . In silico DNA–DNA hybridization (isDDH) values between strain WCHKl090001 and type strains of all known species of the genus Klebsiella ranged from 22.3 to 35.2 %. Strain WCHKl090001 could be distinguished from species of the Klebsiella oxytoca phylogroup by its negative Voges–Proskauer reaction. Genotypic and phenotypic characteristics from this study indicate that strain WCHKl090001 should be considered to represent a novel species of the genus Klebsiella , for which the name Klebsiella huaxiensis sp. nov. is proposed. The type strain is WCHKl090001T (=GDMCC 1.1379T=CNCTC 7650T).
-
-
-
Aquabacterium tepidiphilum sp. nov., a moderately thermophilic bacterium isolated from a hot spring
A Gram-stain-negative, aerobic, non-spore-forming and rod-shaped bacterium, designated YIM 730274T, was isolated from a sediment sample collected from a hot spring located in Tibet, PR China, and was characterized by using a polyphasic taxonomy approach. Cells were motile by means of a polar flagellum. The strain was oxidase- and catalase-positive, and contained polyalkanoates and polyphosphate as storage polymers. Growth occurred at 25–50 °C, at pH 6.0–8.5 and with 0.5–1.0 % NaCl. The major fatty acids (>10 %) were summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The known polar lipids comprised of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine. The isoprenoid quinone was Q-8. The G+C content of genomic DNA was 70.7 mol%. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that the strain forms a monophyletic branch at the periphery of the evolutionary radiation occupied by the genus Aquabacterium in the class Betaproteobacteria . The most closely related phylogenetic neighbours were Aquabacterium limnoticum ABP-4T (97.8 % 16S rRNA gene sequence identity) and Aquabacterium commune B8T (97.2 % 16SrRNA gene sequence identity). DNA–DNA relatedness values between YIM 730274T and A. limnoticum KCTC 23306T (46.4±0.4 %) and A. commune DSM 11901T (42.2±1.2 %) were well below the 70 % limit for species identification. YIM 730274T was distinguishable from other members of the genus Aquabacterium by the differences in phenotypic, chemotaxonomic and genotypic characteristics. YIM 730274T merits recognition as a representative of a novel species of the genus Aquabacterium . It is proposed that the isolate should be classified in the genus Aquabacterium as representing a novel species, Aquabacterium tepidiphilum sp. nov. The type strain is YIM 730274T (=KCTC 52716T=CCTCC AB 2016295T).
-
-
-
Reclassification of Xanthomonas gardneri (ex Šutič 1957) Jones et al. 2006 as a later heterotypic synonym of Xanthomonas cynarae Trébaol et al. 2000 and description of X. cynarae pv. cynarae and X. cynarae pv. gardneri based on whole genome analyses
Multilocus sequence analysis of Xanthomonas species revealed a very close relationship between Xanthomonas cynarae , an artichoke pathogen and Xanthomonas gardneri, a tomato and pepper pathogen. Results of whole genome sequence comparisons using average nucleotide identity between representative strains of X. gardneri and X. cynarae were well above the threshold of 95–96 %. Inoculations of X. gardneri strains in artichoke leaves caused mild disease symptoms, but only weak symptoms were observed in the bracts. Both X. cynarae and X. gardneri grew equally and caused typical bacterial spot symptoms in pepper after artificial inoculation. However, X. cynarae induced a hypersensitive reaction in tomato, while X. gardneri strains were virulent. Pathogenicity-associated gene clusters, including the protein secretion systems, type III effector profiles, and lipopolysaccharide cluster were nearly identical between the two species. Based on our results from whole genome sequence comparison, X. gardneri and X. cynarae belong to the same species. The name X. cynarae has priority and X. gardneri should be considered as a later heterotypic synonym. An emended description of X. cynarae (type strain=CFBP 4188T, =DSM 16794T) is given. However, due to the host specificity in artichoke and tomato, two pathovars, X. cynarae pv. cynarae and X. cynarae pv. gardneri, are proposed.
-
-
-
Reclassification of Bisgaard taxon 37 and taxon 44 as Psittacicella melopsittaci gen. nov., sp. nov., Psittacicella hinzii sp. nov. and Psittacicella gerlachiana sp. nov. within Psittacicellaceae fam. nov. of the order Pasteurellales
Bacteria isolated from lesions as well as apparently normal tissues of psittacine birds have previously been reported as taxon 37 and taxon 44 of Bisgaard. 16S rRNA gene sequence comparisons revealed a distant relationship to members of Pasteurellaceae at the species, genus and family levels. The polar lipid profile consisted of the major components phosphatidylethanolamine and phosphatidylglycerol. A new family Psittacicellaceae fam. nov. is proposed with the type genus Psittacicella gen. nov. The new genus Psittacicella includes the type species Psittacicella melopsittaci sp. nov. with type strain B96/4T (=CCUG 70858T=DSM 105476T), Psittacicella hinzii sp. nov. with type strain 111T (=CCUG 52861T=CCM 8842T) and Psittacicella gerlachiana sp. nov. with type strain EEAB3T1T (=CCUG 70857T=DSM 105477T). In addition to the major polar lipids, strain 111T possessed the non-identified aminophospholipids APL1 and APL2 and trace amounts of four lipids (L1–L4) whereas strain B94/4T showed the minor unidentified aminophospholipids APL3 and APL2 and trace amounts of unidentified lipid L3. These results demonstrate that strain B96/4T can be distinguished from 111T based on presence/absence of the unidentified lipids APL1 and APL3. The total polar lipid profile of strain EEAB3T1T differed from B96/4Tonly in one minor lipid. Strain B96/4T can further be distinguished from 111T by acid formation from trehalose and raffinose and the α-glucosidase test. Strains 111T and EEAB3T1T can be separated based on acid formation from trehalose and the α-glucosidase test. Strains B96/4T and EEAB3T1T can be separated by acid formation from raffinose and eight signature indels in the RpoB protein.
-
-
-
Alcanivorax profundi sp. nov., isolated from deep seawater of the Mariana Trench
A Gram-stain-negative, rod-shaped, non-motile, strictly aerobic strain, designated as MTEO17T, was isolated from a 1000 m deep seawater sample of the Mariana Trench. Growth was observed at 10–45 °C (optimum, 37 °C), in the presence of 0.0–12.0 % NaCl (w/v; optimum, 3.0 %) and at pH 6.0–10.0 (optimum, pH 7.0–8.0). Phylogenetic analysis, based on the 16S rRNA gene sequence, revealed that strain MTEO17T belonged to the genus Alcanivorax and showed the highest sequence similarity of 97.9 % to Alcanivorax nanhaiticus MCCC 1A05629T. The estimated average nucleotide identity and DNA–DNA hybridization values between strain MTEO17T and A. nanhaiticus MCCC 1A05629T were 78.98 and 23.80 %, respectively. The significant dominant fatty acids were C16 : 0, summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c). The polar lipids comprised two phosphatidylethanolamines, one phosphatidylglycerol, one unidentified phospholipid and four unidentified polar lipids. The DNA G+C content of strain MTEO17T was 57.5 %. On the basis of the polyphasic evidence, strain MTEO17T is proposed to represent a novel species of the genus Alcanivorax , for which the name Alcanivorax profundi sp. nov. is proposed. The type strain is MTEO17T (=KCTC 52694T=MCCC 1K03252T).
-
-
-
Pseudomonas mangrovi sp. nov., isolated from mangrove soil
A Gram-stain-negative, aerobic, non-motile, short-rod-shaped bacterium, designated as strain TC11T, was isolated from rhizosphere soil of mangrove forest (Kandeliaobovata) in Fugong village, Zhangzhou, Fujian, China. Strain TC11T grew at 15–45 °C (optimum, 35 °C), 0–8 % (w/v) NaCl (optimum, 1 %, w/v) and pH 5.5–9.5 (optimum, pH 7.5). Phylogenetic analyses revealed that strain TC11T belonged to a clade of the genus Pseudomonas and showed the highest sequence similarity of 98.4 % to Pseudomonas fluvialis ASS-1T, followed by Pseudomonas oleovorans subsp. oleovorans DSM 1045T (97.9 %), Pseudomonas indoloxydans JCM 14246T (97.7 %), Pseudomonas guguanensis JCM 18416T(97.6 %) and Pseudomonas alcaliphila JCM 10630T (97.5 %) on the basis of their 16S rRNA gene sequences. The DNA G+C content was 64.3 mol%. In silico DNA–DNA hybridization and average nucleotide identity values between strain TC11T and the reference strains were 19–22 % and 72–78 %, respectively. Studies based on the three housekeeping genes, rpoB, gyrB and rpoD, further confirmed that strain TC11T is a novel member of the genus Pseudomonas . The major fatty acids of strain TC11Twere C16 : 0, summed feature 8 (C18 : 1ω6c/C18 : 1ω7c) and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c). The sole isoprenoid quinone was Q-9. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Based on the phenotypic, chemotaxonomic and phylogenetic properties, strain TC11T represents a novel species of the genus Pseudomonas , for which the name Pseudomonas mangrovi sp. nov., is proposed. The type strain is TC11T (=KCTC 62159=MCCC 1K03499).
-
-
-
Lutibaculum pontilimi sp. nov., isolated from a tidal mudflat and emended description of the genus Lutibaculum
More LessA novel Gram-reaction-negative bacterium, designated strain GH1-34T, was isolated from a sample of tidal mudflat collected at the seashore of Gangwha Island, Republic of Korea. Cells of the bacterium were strictly aerobic, catalase- and oxidase-positive, motile by means of a polar flagellum and rod shaped. It was found to grow at 0–5 % (w/v) NaCl, 20–45 °C and pH 6–10. The major isoprenoid quinone was Q-10. The polar lipids were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminolipid and an unidentified glycolipid. The predominant fatty acids were C18 : 1ω7c and C19 : 0cyclo ω8c. The G+C content of the DNA was 70.9 mol%. Comparative 16S rRNA gene sequence analysis revealed that strain GH1-34T formed a tight cluster with the type strain of Lutibaculum baratangense with 98.3 % sequence similarity; levels of the 16S rRNA gene sequence similarity between the novel strain and other representatives of the order ‘ Rhizobiales ’ were <95.0 %. DNA–DNA relatedness between the organism and L. baratangense KCTC 22669T was 33 %, Based on the results of phenotypic analysis and DNA–DNA hybridization experiments, strain GH1-34T (=KCTC 52847T=NBRC 113277T) represents a novel species of the genus Lutibaculum , for which the name Lutibaculum pontilimi sp. nov. is proposed.
-
-
-
Calidifontimicrobium sediminis gen. nov., sp. nov., a new member of the family Comamonadaceae
Two Gram-stain-negative and facultative anaerobic bacteria, designated strains SYSU G00088T and YIM 73032, were isolated from sediment samples collected from hot springs in Tibet, China. Based on the analyses of the 16S rRNA gene sequences, the two isolates were observed to be a member of the family Comamonadaceae , sharing highest pairwise sequence identity with type strains of Piscinibacter defluvii SH-1T (97.8 and 97.7 %, respectively). They were able to grow in the temperature range of 37–50 °C, pH 5.0–9.0 and in the presence of up to 0.5 % (w/v) NaCl. Both strains were positive for catalase and oxidase reactions. Cells of the novel isolates were short-rods and motile by means of a polar flagellum. The chemotaxonomic features of the two strains include ubiquinone 8 as the respiratory isoprenologue, diphosphatidylglycerol, phosphatidylethanolamine and phoshatidylglycerol as the known polar lipids, and C16 : 0 and C17 : 0cyclo as major fatty acids. The genomic DNA of strains SYSU G00088T and YIM 73032 had G+C contents of 71.8 and 71.9%, respectively. Based on the analyses of the phylogenetic, chemotaxonomic, morphological and genomic data, the two isolates are considered to represent a novel species of a new genus, for which the name Calidifontimicrobium sediminis gen. nov., sp. nov. is proposed. The type strain of Calidifontimicrobium sediminis is SYSU G00088T (=KCTC 52671T=CGMCC 1.13597T).
-
-
-
Sphingomonas deserti sp. nov., isolated from Mu Us Sandy Land soil
More LessA Gram-stain-negative, rod-shaped bacterium, designated as strain GL-C-18T, was isolated from soil sample collected at Mu Us Sandy Land, China, and its taxonomic position was investigated using a polyphasic approach. Growth was observed in the presence of 0–1 % (w/v) NaCl (optimum, 0 %), pH 6.0–9.0 (optimum, pH 7.0–8.0) and 20–37 °C. On the basis of 16S rRNA gene sequence similarity, strain GL-C-18T belonged to the family Sphingomonadaceae and was most closely related to Sphingosinicella vermicomposti YC7378T (95.7 %), Sphingomonas oligophenolica S213T (95.0 %) and Sphingobium boeckii 301T (94.8 %). The draft genome of strain GL-C-18T was 6.09 Mb, and the G+C content was 66.0 %. The average nucleotide identity value to Sphingosinicella vermicomposti YC7378T was 83.7 %. The predominant respiratory quinone was Q-10. The major fatty acids were C18 : 1ω7c, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16:0 and C14 : 0 2OH. The main polar lipids were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. On the basis of chemotaxonomic, phylogenetic and phenotypic evidence, strain GL-C-18T represents a novel species of the genus Sphingomonas , for which the name Sphingomonas deserti sp. nov. is proposed. The type strain is GL-C-18T (=ACCC 60076T=KCTC 62411T).
-
-
-
Transfer of the waterfall source isolate Pectobacterium carotovorum M022 to Pectobacterium fontis sp. nov., a deep-branching species within the genus Pectobacterium
More LessPectobacterium carotovorum M022T has been isolated from a waterfall source in Selangor district (Malaysia). Using genomic and phenotypic tests, we re-examined the taxonomical position of this strain. Based on 14 concatenated housekeeping genes (fusA, rpoD, rpoS, acnA, purA, gyrB, recA, mdh, mtlD, groEL, secY, glyA, gapA and rplB), multi-locus sequence analysis revealed that strain M022T falls into a novel clade separated from the other Pectobacterium species. The in silico DNA–DNA hybridization and average nucleotide identity values were lower than the 70 and 95 % threshold values, respectively. In addition, by combining genomic and phenotypic tests, strain M022T may be distinguished from the other Pectobacterium isolates by its incapacity to grow on d(+)-xylose, l-rhamnose, cellobiose and lactose. Strain M022T (=CFBP 8629T=LMG 30744T) is proposed as the type strain of the Pectobacterium fontis sp. nov.
-
-
-
Crenobacter cavernae sp. nov., isolated from a karst cave, and emended description of the genus Crenobacter
More LessA Gram-stain-negative, rod-shaped, motile and strictly aerobic novel bacterial isolate, designated strain K1W11S-77T, was obtained from a water sample that was collected from a karst cave in Guizhou province, PR China. The results of a phylogenetic analysis based on 16S rRNA gene sequences indicated that K1W11S-77T represented a member of the genus Crenobacter within the family Neisseriaceae of the phylum Proteobacteria . K1W11S-77T was phylogenetically closely related to Crenobacter luteus YIM 78141T (Their 16S rRNA gene sequence similarity is 95.02 %). Growth of K1W11S-77T occurred at 10–30 °C, at pH 7–9, and in the presence of 0–1 % (w/v) NaCl. The major cellular fatty acids were C12 : 0, C16 : 0, C18:1ω7c and summed feature 3. The major isoprenoid quinone was Q-8. The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and one unidentified phospholipid. The genome of K1W11S-77T was 3.27 Mb long and encoded 3167 annotated genes. The DNA G+C content of the genomic DNA was 65.3 mol%. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, K1W11S-77T is considered to represent a novel species of the genus Crenobacter , for which the name Crenobacter cavernae sp. nov. is proposed. The type strain is K1W11S-77T (=CGMCC 1.13527T=NBRC 113452T).
-
-
-
Marinobacterium boryeongense sp. nov., isolated from seawater
More LessA Gram-stain-negative and strictly aerobic bacterium, designated DMHB-2T, was isolated from a sample of seawater collected off the Yellow Sea coast of the Republic of Korea. Cells were short rods and motile by means of a single polar flagellum. Catalase and oxidase activities were positive. Growth occurred at pH 5.5–10.0 (optimum, pH 6.0), 15–45 °C (optimum, 25 °C) and with 1–9 % NaCl (optimum, 3 %). The respiratory quinone was ubiquinone-8 and the major fatty acids were C16 : 0 (17.9 %), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 26.1 %) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c; 37.4 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DMHB-2T belong to the genus Marinobacterium , with the highest 16S rRNA gene sequence similarity of 95.2 % to Marinobacterium zhoushanense KCTC 42782T. The genomic DNA G+C content of strain DMHB-2T was 60.8 mol%. On the basis of the phenotypic, chemotaxonomic and genotypic characteristics presented in this study, strain DMHB-2T is suggested to represent a novel species of the genus Marinobacterium , for which the name Marinobacterium boryeongense sp. nov. is proposed. The type strain is DMHB-2T (=KACC 19225T=JCM 31902T).
-
-
-
Marinimicrobium alkaliphilum sp. nov., an alkaliphilic bacterium isolated from soil and emended description of the genus Marinimicrobium
More LessTwo Gram-stain-negative, rod-shaped bacterial strains, designated SW121T and W12, were isolated from a soil sample collected from Shanxi Province, China. The two strains were strictly aerobic, catalase-positive and oxidase-positive. Both strains grew at 6–42 °C (optimum, 30 °C), at pH 5.5–11.0 (optimum, pH 9.0) and in the presence of 0–15.0 % (w/v) NaCl (optimum, 2.0–3.0 %). The predominant cellular fatty acids of strain SW121T were C16 : 0, C18 : 1ω7c and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). Strain SW121T contained ubiquinone-8 as the sole respiratory quinone. Diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol were major polar lipids. The genomic DNA G+C content of strain SW121T was 58.5 mol%. Comparative analysis of 16S rRNA gene sequences revealed that strains SW121T and W12 showed the highest similarities to Marinimicrobium koreense DSM 16974T(95.7 and 95.5 %, respectively). On the basis of phylogenetic inference and phenotypic characteristics, it is proposed that the two strains represent a novel species of the genus Marinimicrobium , for which the name Marinimicrobium alkaliphilum sp. nov. is proposed. The type strain is SW121T (=CGMCC 1.16166T=KCTC 62651T).
-
-
-
Sphingosinicella humi sp. nov., isolated from arsenic-contaminated farmland soil and emended description of the genus Sphingosinicella
More LessA Gram-stain-negative, strictly aerobic bacterium, designated strain QZX222T, was isolated from arsenic-contaminated farmland soil. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain QZX222T was clustered with Sphingosinicella vermicomposti YC7378T (97.0 %), Sphingosinicella xenopeptidilytica 3–2W4T (96.1 %), Sphingosinicella microcystinivorans Y2T (96.0 %) and Sphingosinicella soli KSL-125T (95.9 %). Compared to strain QZX222T, Spingomonas olgophenolica JCM 12082T and Sphingobium boeckii 469T had 16S rRNA gene similarities of 96.2 and 95.9 %, respectively, but they located in other phylogenetic clusters. DNA–DNA hybridization and genomic ANI values between strain QZX222T and Sphingosinicella vermicomposti DSM 21593T (KCTC 22446T) were 34.8 and 75.0 %, respectively. The genome size of strain QZX222T was 3.0 Mb including 2982 predicted genes. The strain had a DNA G+C content of 65.9 mol%. Strain QZX222T had ubiquinone Q-10 as the major respiratory quinone and homospermidine as the major polyamine. The major fatty acids (>10 %) of strain QZX222T were C17 : 1 ω6c, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C17 : 1 ω8c. The polar lipids were sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine and an unidentified glycolipid. Strain QZX222T could be distinguished from other Sphingosinicella strains based on the results of phylogenetic and genomic analyses, DNA–DNA hybridization, white colour colony, hydrolysis of urea, alkaline phosphatase activity, lack of phosphatidylmonomethylethanolamine, and presence of phosphatidylcholine. Therefore, strain QZX222T represents a novel species of Sphingosinicella , for which the name Sphingosinicella humi sp. nov. is proposed. The type strain is QZX222T (=KCTC 62519T=CCTCC AB 2018030T).
-
Volumes and issues
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)