- Volume 67, Issue 2, 2017
Volume 67, Issue 2, 2017
- New Taxa
-
- Proteobacteria
-
-
Roseitalea porphyridii gen. nov., sp. nov., isolated from a red alga, and reclassification of Hoeflea suaedae Chung et al. 2013 as Pseudohoeflea suaedae gen. nov., comb. nov.
More LessA Gram-staining-negative, strictly aerobic bacterial strain, designated MA7-20T, was isolated from a marine alga, Porphyridium marinum, in Korea. Cells showing oxidase-positive and catalase-positive activities were motile rods with bipolar flagella. Growth of strain MA7-20T was observed at 15–45 °C (optimum, 30–37 °C), at pH 6.0–10.5 (optimum, pH 7.0–8.0) and in the presence of 0–7 % (w/v) NaCl (optimum, 2–3 %). Strain MA7-20T contained summed feature 8 (comprising C18 : 1ω7c/C18 : 1ω6c), 11-methyl C18 : 1ω7c and C18 : 0 as the major fatty acids and ubiquinone-10 as the sole isoprenoid quinone. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyl-N-methylethanolamine. The G+C content of the genomic DNA was 61.5 mol%. Strain MA7-20T was most closely related to Hoeflea suaedae YC6898T, Oricola cellulosilytica CC-AMH-0T and Nitratireductor basaltis J3T with 96.0, 95.8 and 95.8 % 16S rRNA gene sequence similarities, respectively, but the strain formed a distinct phylogenetic lineage from them within the family Phyllobacteriaceae with a low bootstrap value. H. suaedae also formed a clearly distinct phylogenetic lineage from other members of the genus Hoeflea and closely related genera. On the basis of phenotypic, chemotaxonomic and molecular properties, strain MA7-20T represents a novel species of a new genus of the family Phyllobacteriaceae , for which the name Roseitalea porphyridii gen. nov., sp. nov. is proposed. The type strain is MA7-20T (=KACC 18807T=JCM 31538T). In addition, H. suaedae is also reclassified as Pseudohoeflea suaedae gen. nov., comb. nov. (type strain YC6898T=KACC 14911T=NBRC 107700T).
-
-
-
Polynucleobacter wuianus sp. nov., a free-living freshwater bacterium affiliated with the cryptic species complex PnecC
More LessStrain QLW-P1FAT50C-4T, isolated from a shallow, acidic freshwater pond located in the Austrian Alps at an altitude of 1300 m, was characterized by investigation of phenotypic, chemotaxonomic and genomic traits. As shown previously, phylogenetic analyses based on 16S rRNA gene sequences placed the strain in the cryptic species complex PnecC within the genus Polynucleobacter . The major fatty acids of the strain were C16 : 1ω7c and C18 : 1ω7c. The strain has a genome of 2.23 Mbp with a DNA G+C content of 44.9 mol%. The strain encodes a seemingly complete gene cluster for anoxygenic photosynthesis but lacks typical genes for CO2 assimilation. In order to resolve the phylogenetic position of the strain within the species complex PnecC, concatenated partial sequences of eight housekeeping genes were analysed. The phylogenetic reconstruction obtained did not place strain QLW-P1FAT50C-4T close to any of the five previously described species within subcluster PnecC. Pairwise average nucleotide identity (ANI) comparisons of whole-genome sequences suggested that strain QLW-P1FAT50C-4T (=DSM 24008T=CIP 111100T) represents a novel species, for which we propose the name Polynucleobacter wuianus sp. nov.
-
-
-
Desulfonatronospira sulfatiphila sp. nov., and Desulfitispora elongata sp. nov., two novel haloalkaliphilic sulfidogenic bacteria from soda lakes
More LessTwo novel haloalkaliphilic bacteria with dissimilatory sulfidogenic metabolism were recovered from syntrophic associations obtained from anaerobic sediments of hypersaline soda lakes in Kulunda Steppe (Altai, Russia). Strain ASO3-2T was a member of a sulfidogenic syntrophic association oxidizing acetate at extremely haloalkaline conditions, and was isolated in pure culture using formate as electron donor and sulfate as electron acceptor. It was identified as representing a novel member of the genus Desulfonatronospira within the Deltaproteobacteria . In contrast to the two known species of this genus, the novel isolate was able to grow with formate as electron donor and sulfate, as well as with sulfite, as electron acceptor. Strain Acr1T was a minor component in a soda lake syntrophic association converting benzoate to methane and acetate. It became dominant in a subculture fed with crotonate. While growing on crotonate, strain Acr1T formed unusually long cells filled with polyhydroxyalkanoate-like granules. Its metabolism was limited to fermentation of crotonate and pyruvate and the ability to utilize thiosulfate and sulfur/polysulfide as electron acceptor. Strain Acr1T was identified as representing a novel member of the genus Desulfitispora in the class Clostridia . Both isolates were obligately haloalkaliphilic with extreme salt tolerance. On the basis of phenotypic and phylogenetic analyses, the novel sulfidogenic isolates from soda lakes are proposed to represent two novel species: Desulfonatronospira sulfatiphila sp. nov. (ASO3-2T=DSM 100427=UNIQEM U993T) and Desulfitispora elongata sp. nov. (Acr1T=DSM 29990=UNIQEM U994T).
-
-
-
Methylobacillus methanolivorans sp. nov., a novel non-pigmented obligately methylotrophic bacterium
More LessThree strains of obligately methylotrophic Betaproteobacteria (ZT, SP and M3) with the ribulose monophosphate pathway of C1 assimilation are described. The isolates were strictly aerobic, Gram-stain-negative, asporogenous, motile (strains ZT and M3) or non-motile (strain SP) rods that multiplied by binary fisson, and were mesophilic and neutrophilic. All three strains utilized methanol but only strains SP and M3 utilized methylamine as carbon and energy sources. The prevailing cellular fatty acids were straight-chain saturated C16 : 0 and unsaturated C16 : 1 ω7c acids. The major ubiquinone was Q-8. The predominant phospholipids were phosphatidylethanolamine, phosphatidylglycerol and cardiolipin. Ammonia was assimilated by glutamate dehydrogenase. The DNA G+C contents of strains ZT, SP and M3 were 51.0, 52.0 and 52.0 mol% (T m), respectively. Levels of 16S rRNA gene sequence similarity between the three strains were very high (99.9–100 %), and they shared high levels of DNA–DNA relatedness (88–98 %). Based on 16S rRNA gene sequence analysis and DNA–DNA relatedness (19–30 %) with the type strains of the genus Methylobacillus , the novel isolates ZT, SP and M3 are classified as representing a novel species of this genus, for which the name Methylobacillus methanolivorans sp. nov. is proposed. The type strain is ZT (=VKM B-3037T=JCM 31401T=CCUG 68999T).
-
-
-
Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil
During a survey of root-nodulating symbionts of Mimosoid species in the south-east region of Brazil, eight Paraburkholderia isolates were obtained from nodules of the legume species Piptadenia gonoacantha, either from the field or following a soil trapping method with the same plant host. 16S rRNA gene as well as recA and gyrB phylogenetic markers placed these strains in two new clades within the genus Burkholderia sensu lato. DNA–DNA hybridization values and analyses of average nucleotide identities of the whole genome sequence of selected strains in each clade (STM 7183 and STM 7296) showed that the two clades represented novel species of the genus Paraburkholderia . All eight isolates were further characterized using DNA base content determination, chemotaxonomic and biochemical profiling and symbiotic properties, which allowed to distinguish the novel species from known diazotrophic species of the genus Paraburkholderia . Based on genomic and phenotypic data, the names Paraburkholderia piptadeniae sp. nov. with type strain STM 7183T (=DSM 101189T=LMG 29163T) and Paraburkholderia ribeironis sp. nov. with type strain STM 7296T (=DSM 101188T=LMG 29351T) are proposed.
-
-
-
Saccharedens versatilis gen. nov., sp. nov., a sugar-degrading member of the Burkholderiales isolated from Cephalotes rohweri ant guts
More LessCephalotes ‘turtle’ ants host a core group of gut–associated symbionts, but their potential contributions to ant nutrition and disease resistance remain uncharacterized in vitro. To gain a better understanding of the metabolic capability of core symbionts belonging to the Burkholderiales , we cultivated and characterized strain CAG32T from the guts of Cephalotes rohweri ants. Strain CAG32T was rod-shaped, Gram-stain-negative, motile and formed pale-white colonies on trypticase soy agar. Optimum growth occurred under an atmosphere of 20 % O2 supplemented with 1 % CO2. Strain CAG32T grew under NaCl concentrations of 0–2.0 %, temperatures of 23–47 °C and pH values of 4.0–8.0, and was capable of producing n-butyric acid and degrading carbohydrates for growth. The G+C content of the genomic DNA was 59.2±0.6 mol% and the major fatty acids were C16 : 0, C16 : 1 ω7c/C16 : 1 ω6c, C17 : 0 cylcopropane, C12 : 0 and C14 : 0 3-OH/C16 : 1 iso I. The only respiratory quinone detected was ubiquinone-8 (Q-8) and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Based on phylogenetic analysis of the 16S rRNA gene sequence, strain CAG32T shared 96.9 % nucleotide similarity with its closest cultivated neighbours Bordetella petrii Se-1111RT and Bordetella bronchiseptica ATCC 19395T. This, combined with differences in the phenotypic and biochemical profile from neighbouring strains, warrants the classification of strain CAG32T as representing a novel species of a new genus within the Burkholderiales family Alcaligenaceae . The name Saccharedens versatilis gen. nov., sp. nov. is proposed. The type strain of Saccharedens versatilis is CAG32T (=NCIMB 15010T=DSM 100909T).
-
-
-
Altererythrobacter soli sp. nov., isolated from desert sand
More LessAn alkaliphilic strain designed MN-1T was isolated from a desert sand sample collected from Tengger desert, north-western China. To delineate its taxonomic position, this Gram-stain-negative, rod-shaped, strictly aerobic bacterium was subjected to a polyphasic taxonomic study. Growth was observed at temperatures from 4 to 37 °C (optimum 30–32 °C), at salinities from 0 to 2 % (optimum 1 %) and at pH from 6.5 to 12.0 (optimum 7.0–9.0). Phylogenetic analysis based on 16S rRNA gene sequencing showed that strain MN-1T was a member of the genus Altererythrobacter but could be distinguished from recognized species of this genus. Compared to the reference strains, the novel strain was flagellated and motile by means of polar flagella. The predominant respiratory quinone was ubiquinone-10 and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, phosphatidylglycerol, phosphatidylcholine, one unidentified glycolipid, one unidentified phospholipid and four unidentified lipids. The predominant fatty acids were C18 : 1 ω7c, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 0. These chemotaxonomic traits were in agreement with the characteristics of the genus Altererythrobacter . Strain MN-1T was most closely related to Altererythrobacter xinjiangensis S3-63T (96.9 % 16S rRNA gene sequence similarity), followed by Altererythrobacter dongtanensis JM27T (96.4 %) and Altererythrobacter marinus H32T (96.1 %). The G+C content of the genomic DNA of strain MN-1T was 67.0 mol%. On the basis of data from this polyphasic taxonomic study, strain MN-1T is proposed as the type strain of a novel species of the genus Altererythrobacter , named as Altererythrobacter soli sp. nov. (=KCTC 52135T=MCCC 1K02066T).
-
-
-
Marinobacter halotolerans sp. nov., a halophilic bacterium isolated from a saltern crystallizing pond
More LessA Gram-stain-negative, moderately halophilic, motile bacterium, designated strain CP12T, was isolated from a crystallizing pond of a saltern of the Yellow Sea in Korea. Cells of strain CP12T were non-spore-forming rods and produced whitish-yellow colonies. Growth was observed at 10–37 °C (optimum 37 °C), at pH 6.0–9.0 (optimum pH 7.0), and in the presence of 0.5–20 % (w/v) NaCl (optimum 3 %). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CP12T was closely related to Marinobacter flavimaris SW-145T (98.4 % 16S rRNA gene sequence similarity), Marinobacter algicola DG893T (98.2 %), Marinobacter adhaerens HP15T (98.2 %), Marinobacter salsuginis SD-14BT (97.9 %), Marinobacter salarius R9SW1T (97.6 %) and Marinobacter lipolyticus SM19T (97.1 %). DNA–DNA hybridization studies showed values lower than 18.6 % between strain CP12T and any of these species. The predominant respiratory isoprenoid quinone was ubiquinone-9 and the major cellular fatty acids of strain CP12T were C16 : 0, C12 : 0 3-OH, C12 : 0, Summed feature 3, C16 : 0 10-methyl and C18 : 1 ω9c. On the basis of phenotypic properties, and phylogenetic and chemotaxonomic data, it is evident that strain CP12T represents a novel species of the genus Marinobacter , for which the name Marinobacter halotolerans sp. nov. is proposed. The type strain is CP12T (=KACC 18381T=NBRC 110910T).
-
-
-
Racemicystis persica sp. nov., a myxobacterium from soil
A novel myxobacterium, strain MSr11462T, was isolated in 2015 from a soil sample collected form Kish Island beach, Persian Gulf, Iran. It displayed general myxobacterial features like Gram-negative staining, rod-shaped vegetative cells, gliding on solid surfaces, microbial lytic activity, fruiting-body-like aggregates and myxospore-like structures. The strain was mesophilic, aerobic and showed a chemoheterotrophic mode of nutrition. It was resistant to many antibiotics like gentamycin, polymyxin, fusidic acid and trimethoprim, and the key fatty acids of whole-cell hydrolysates were iso-C15 : 0, C16 : 0, iso-C17 : 0, C18 : 1, iso-C17 : 1 2-OH, C18 : 1 2-OH, iso-C15 : 0 OAG (O-alkylglycerol) and C16 : 1 OAG. The 16S rRNA gene sequence showed highest similarity (98.6 %) to Racemicystis crocea strain MSr9521T (GenBank accession no. KT591707). The phylogenetic analysis based on 16S rRNA gene sequences and matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) spectroscopy data supports a novel species of the family Polyangiaceae and the genus Racemicystis . DNA–DNA hybridization showed only about 50 % similarity between the novel strain and the phylogenetically closest species, Racemicystis. crocea MSr9521T. On the basis of a comprehensive taxonomic study, we propose a novel species, Racemicystis persica sp. nov., for strain MSr11462T (=DSM 103165T=NCCB 100606T).
-
-
-
Aureimonas glaciei sp. nov., isolated from an ice core
A bacterial strain, B5-2T, was isolated from an ice core drilled from Muztagh Glacier, China. Strain B5-2T was a Gram-stain-negative, short rod-shaped, motile by polar flagella, aerobic bacterium. The major fatty acids of strain B5-2T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and iso-C13 : 0. The G+C content of the DNA from strain B5-2T was 69.3 mol%. The predominant isoprenoid quinone of strain B5-2T was Q-10. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine, an unidentified phospholipid and sulfoquinovosyldiacylglycerol. Comparative 16S rRNA gene sequence analysis revealed that the novel strain B5-2T shared highest similarity (96.7 %) with Aureimonas altamirensis S21BT. On the basis of the results of this polyphasic study, strain B5-2T represents a novel species of the genus Aureimonas, for which the name Aureimonas glaciei sp. nov. is proposed. The type strain is B5-2T (=CGMCC 1.15493T=KCTC 52395T).
-
-
-
Novosphingobium guangzhouense sp. nov., with the ability to degrade 1-methylphenanthrene
More LessA novel Gram-stain-negative, flagellated, rod-shaped, yellow-pigmented aerobic bacterium, strain SA925T, that is capable of degrading 1-methylphenanthrene was isolated from oil-polluted soil collected from a refinery located in Guangzhou, China. Phylogenetic analysis based on the 16S rRNA gene sequence demonstrated that strain SA925T belongs to the genus Novosphingobium and is evolutionarily close to the type strains of Novosphingobium gossypii (98.5 % similarity), Novosphingobium panipatense (98.2 %), Novosphingobium mathurense (98.0 %) and Novosphingobium pentaromativorans (96.5 %). The G+C content of the genomic DNA was 60.2 mol%. DNA–DNA hybridization experiments between strain SA925T and the closest strain, Novosphingobium gossypii JM-1396T, revealed a low level of relatedness (35.5 %). Strain SA925T grew at 10–35 °C, at pH 6.0–8.0 and in the presence of 0–4 % (w/v) NaCl. The major fatty acids were C18 : 1 ω7c, C16 : 0 and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). The polar lipid profiles mainly consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylethanolamine and sphingoglycolipid (the characteristic polar lipid). The predominant ubiquinone was Q-10. The major polyamine was spermidine. Based on the phylogenetic, phenotypic and physiological characteristics, strain SA925T was considered to represent a novel species of the genus Novosphingobium , for which the name Novosphingobium guangzhouense sp. nov. is proposed. The type strain is SA925T (=DSM 32207T=GDMCC 1.1110T).
-
- Eukaryotic Micro-Organisms
-
-
-
Allodekkera sacchari gen. nov., sp. nov., a yeast species in the Saccharomycetales isolated from a sugar factory
Three yeast isolates, G5-5(5)T, G5-9(3) and G5-9(4), were obtained from the sugar cane juice and waste from sugar production plant (Korach Industry Co., Ltd) in Korach province, Thailand. They were found to belong to the same species based on DNA sequence identity of the small subunit ribosomal RNA gene (SSU) and the D1/D2 region of the large subunit rRNA gene (LSU D1/D2). A blastn search of the GenBank database revealed they had 93 % nucleotide sequence identity to Dekkera bruxellensis for the SSU (1742 bp), but their LSU D1/D2 sequence (572 bp) showed less than 90 % identity to all available sequences in the database. Phylogenetic analyses with neighbour-joining and maximum-parsimony methods using the aligned LSU D1/D2 and SSU sequences (a total of 2072 positions after removal of gaps) inferred that the three isolates were separated from all known taxa in the Saccharomycetales, and that the neighbouring taxa were species of Dekkera/Brettanomyces. Physiological and biochemical characters revealed distinct differences between the three isolates and Dekkera/Brettanomyces species, including the ability to assimilate several carbon sources and inability to ferment glucose. Thus, isolates G5-5(5)T, G5-9(3) and G5-9(4) should be assigned to a novel taxon, for which the name Allodekkera sacchari gen. nov., sp. nov. is proposed. The type strain of the type species is G5-5(5)T (=CBS 14167T=JCM 18455T=TISTR 5950T), with MycoBank number MB815477 (for the genus) and MB817751 (for the species). Two additional strains of the species are G5-9(3) (=JCM 18456) and G5-9(4) (=JCM 18457).
-
-
- ICSP Matters
-
-
-
Enterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) share the same nomenclatural type (ATCC 13048) on the Approved Lists and are homotypic synonyms, with consequences for the name Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980)
More LessEnterobacter aerogenes Hormaeche and Edwards 1960 (Approved Lists 1980) and Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) were placed on the Approved Lists of Bacterial Names and were based on the same nomenclatural type, ATCC 13048. Consequently they are to be treated as homotypic synonyms. However, the names of homotypic synonyms at the rank of species normally are based on the same epithet. Examination of the Rules of the International Code of Nomenclature of Bacteria in force at the time indicates that the epithet mobilis in Klebsiella mobilis Bascomb et al. 1971 (Approved Lists 1980) was illegitimate at the time the Approved Lists were published and according to the Rules of the current International Code of Nomenclature of Prokaryotes continues to be illegitimate.
-
-
-
-
Clarifying the limitations on Rule 18a and Rule 30 of the International Code of Nomenclature of Prokaryotes
More LessThe retroactive changes to Rule 18a proposed at the International (IUMS) Congress of Bacteriology and Applied Microbiology meetings of the Judicial Commission in Jerusalem, 1996, have led to several changes in wording that seek to limit the retroactive effects. However, there remains an ambiguity in the wording that changes may easily correct. Changes to Rule 30 should also be made.
-
Volumes and issues
-
Volume 75 (2025)
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)