-
Volume 64,
Issue Pt_12,
2014
Volume 64, Issue Pt_12, 2014
- New Taxa
-
- Eukaryotic Micro-organisms
-
-
Morphology and phylogeny of three karyorelictean ciliates (Protista, Ciliophora), including two novel species, Trachelocerca chinensis sp. n. and Tracheloraphis dragescoi sp. n.
More LessThis paper investigates the morphology and infraciliature of three karyorelictean ciliates, Trachelocerca chinensis sp. n., Tracheloraphis dragescoi sp. n. and a rarely known form, Geleia acuta (Dragesco, 1960) Foissner, 1998, which were isolated from the intertidal zone of sandy beaches at Zhanjiang and Qingdao, China. Trachelocerca chinensis sp. n. is distinguished from related forms by having 26–30 somatic kineties, a narrow glabrous stripe and a single nuclear group composed of approximately four to six macronuclei and two micronuclei. Tracheloraphis dragescoi sp. n. can be recognized through its 14–22 somatic kineties, wide glabrous stripe and a single nuclear group composed of about four macronuclei. Phylogenetic analyses based on small-subunit (SSU) rRNA gene sequences indicated that the genera Trachelocerca and Tracheloraphis are closely related but that neither of them appears to be a clearly monophyletic group. Nonetheless, the monophyly of Trachelocerca is not rejected by the approximately unbiased (AU) test (P = 0.143, >0.05), although that of Tracheloraphis is rejected (P = 0.011, <0.05). Geleia acuta, meanwhile, branched with Geleia fossata and falls in the Geleia clade.
-
- Other Bacteria
-
-
Leptospira mayottensis sp. nov., a pathogenic species of the genus Leptospira isolated from humans
More LessA group of strains representing species of the genus Leptospira, isolated from patients with leptospirosis in Mayotte (Indian Ocean), were previously found to be considerably divergent from other known species of the genus Leptospira . This was inferred from sequence analysis of rrs (16S rRNA) and other genetic loci and suggests that they belong to a novel species. Two strains from each serogroup currently identified within this novel species were studied. Spirochaete, aerobic, motile, helix-shaped strains grew well at 30–37 °C, but not at 13 °C or in the presence of 8-azaguanine. Draft genomes of the strains were also analysed to study the DNA relatedness with other species of the genus Leptospira . The new isolates formed a distinct clade, which was most closely related to Leptospira borgpetersenii , in multilocus sequence analysis using concatenated sequences of the genes rpoB, recA, fusA, gyrB, leuS and sucA. Analysis of average nucleotide identity and genome-to-genome distances, which have recently been proposed as reliable substitutes for classical DNA–DNA hybridization, further confirmed that these isolates should be classified as representatives of a novel species. The G+C content of the genomic DNA was 39.5 mol%. These isolates are considered to represent a novel species, for which the name Leptospira mayottensis sp. nov. is proposed, with 200901116T ( = CIP 110703T = DSM 28999T) as the type strain.
-
-
-
Deinococcus citri sp. nov., isolated from citrus leaf canker lesions
More LessA Gram-stain-positive, strictly aerobic, non-motile, coccoid bacterium, designated NCCP-154T, was isolated from citrus leaf canker lesions and was subjected to a polyphasic taxonomic study. Strain NCCP-154T grew at 10–37 °C (optimum 30 °C) and at pH 7.0–8.0 (optimum pH 7.0). The novel strain exhibited tolerance of UV irradiation (>1000 J m−2). Based on 16S rRNA gene sequence analysis, strain NCCP-154T showed the highest similarity to Deinococcus gobiensis CGMCC 1.7299T (98.8 %), and less than 94 % similarity to other closely related taxa. The chemotaxonomic data [major menaquinone, MK-8; cell-wall peptidoglycan type, A3β (Orn–Gly2); major fatty acids, summed feature 3 (C16 : 1ω7c/iso-C15 : 0 2-OH; 35.3 %) followed by C16 : 0 (12.7 %), iso-C17 : 1ω9c (9.2 %), C17 : 1ω8c (7.4 %) and iso-C17 : 0 (6.9 %); major polar lipids made up of several unidentified phosphoglycolipids and glycolipids and an aminophospholipid, and mannose as the predominant whole-cell sugar] also supported the affiliation of strain NCCP-154T to the genus Deinococcus . The level of DNA–DNA relatedness between strain NCCP-154T and D. gobiensis JCM 16679T was 63.3±3.7 %. The DNA G+C content of strain NCCP-154T was 70.0 mol%. Based on the phylogenetic analyses, DNA–DNA hybridization and physiological and biochemical characteristics, strain NCCP-154T can be differentiated from species with validly published names. Therefore, it represents a novel species of the genus Deinococcus . The name Deinococcus citri sp. nov. is proposed, with the type strain NCCP-154T ( = JCM 19024T = DSM 24791T = KCTC 13793T).
-
-
-
Sphaerochaeta multiformis sp. nov., an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genus Sphaerochaeta
An anaerobic, psychrophilic bacterium, strain MO-SPC2T, was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediments collected from off the Shimokita Peninsula of Japan in the north-western Pacific Ocean. Cells were pleomorphic: spherical, annular, curved rod, helical and coccoid cell morphologies were observed. Motility only occurred in helical cells. Strain MO-SPC2T grew at 0–17 °C (optimally at 9 °C), at pH 6.0–8.0 (optimally at pH 6.8–7.2) and in 20–40 g NaCl l−1 (optimally at 20–30 NaCl l−1). The strain grew chemo-organotrophically with mono-, di- and polysaccharides. The major end products of glucose fermentation were acetate, ethanol, hydrogen and carbon dioxide. The abundant polar lipids of strain MO-SPC2T were phosphatidylglycolipids, phospholipids and glycolipids. The major cellular fatty acids were C14 : 0, C16 : 0 and C16 : 1ω9. Isoprenoid quinones were not detected. The G+C content of the DNA was 32.3 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-SPC2T was affiliated with the genus Sphaerochaeta within the phylum Spirochaetes , and its closest relatives were Sphaerochaeta pleomorpha GrapesT (88.4 % sequence identity), Sphaerochaeta globosa BuddyT (86.7 %) and Sphaerochaeta coccoides SPN1T (85.4 %). Based on phenotypic characteristics and phylogenetic traits, strain MO-SPC2T is considered to represent a novel species of the genus Sphaerochaeta , for which the name Sphaerochaeta multiformis sp. nov. is proposed. The type strain is MO-SPC2T ( = JCM 17281T = DSM 23952T). An emended description of the genus Sphaerochaeta is also proposed.
-
Volumes and issues
-
Volume 75 (2025)
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)
Most Read This Month
