Skip to content
1887

Abstract

A novel carbon monoxide (CO)-oxidizing bacterial strain designated as SB112 was enriched and isolated from leaves from Tocil Wood Nature Reserve in Coventry, UK. The strain was Gram reaction-negative, aerobic, rod-shaped, motile with a polar flagellum and non-spore-forming. Growth of strain SB112 was observed at 10–45 °C, pH 6.0–12.0 and NaCl concentrations of 1–3%. The genomic DNA G+C content was 58.3 mol%, and the major fatty acids (>10%) of strain SB112 were C ω7c, C ω7c 11-methyl and C cyclo ω7c. Major polar lipids were phosphatidylcholine, diphosphatidylglycerol, phosphatidylglycerol and a phospholipid. Strain SB112ᵀ contains ubiquinone-10 as the major respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SB112 formed a separate lineage within the family , showing sequence identities of 97.7%, 97.6% and 97.5%, with its closest relatives , and , respectively. Phylogenomic analyses using whole-genome sequences consistently placed this strain within the family . However, its phylogenetic position did not correspond to any known genus within this family. The genome of strain SB112 was found to possess the form II gene, which encodes the large subunit of the CO dehydrogenase and potentially enables CO oxidation. The average nucleotide identity and digital DNA–DNA hybridization with members of closely related genera yielded values below the thresholds for prokaryotic species delineation (95–96 and 70%, respectively). Based on the phenotypic, chemotaxonomic, phylogenetic, genomic and physiological properties, strain SB112 is considered to represent a novel species of a new genus within the family for which the name gen. nov., sp. nov. is proposed. The type of strain is SB112 (=LMG 33802, =NCAIM B.02691).

Funding
This study was supported by the:
  • Natural Environment Research Council (Award NE/X001245/1)
    • Principal Award Recipient: SchäferHendrik
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006953
2025-11-03
2025-11-08

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/ijsem/75/11/ijsem006953.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006953&mimeType=html&fmt=ahah

References

  1. Mergaert J, Swings J. Phyllobacteriaceae fam. nov. Berg Manual Syst of Archaea Bacteria 20151–3 [View Article]
    [Google Scholar]
  2. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11: [View Article]
    [Google Scholar]
  3. Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP et al. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Evol Microbiol 1997; 47:895–898 [View Article]
    [Google Scholar]
  4. Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A. Thermovum composti gen. nov., sp. nov., an alphaproteobacterium from compost. Int J Syst Evol Microbiol 2012; 62:2991–2996 [View Article] [PubMed]
    [Google Scholar]
  5. Willems A. The family phyllobacteriaceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Springer; 2014 pp 355–418 [View Article]
    [Google Scholar]
  6. Mahieu S, Frérot H, Vidal C, Galiana A, Heulin K et al. Anthyllis vulneraria/Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn, Pb and Cd. Plant Soil 2011; 342:405–417 [View Article]
    [Google Scholar]
  7. Maynaud G, Brunel B, Mornico D, Durot M, Severac D et al. Genome-wide transcriptional responses of two metal-tolerant symbiotic Mesorhizobium isolates to zinc and cadmium exposure. BMC Genomics 2013; 14:1–24 [View Article] [PubMed]
    [Google Scholar]
  8. Weir BS, Turner SJ, Silvester WB, Park D-C, Young JM. Unexpectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of New Zealand, while introduced legume weeds are nodulated by Bradyrhizobium species. Appl Environ Microbiol 2004; 70:5980–5987 [View Article] [PubMed]
    [Google Scholar]
  9. Urakami T, Araki H, Oyanagi H, Suzuki KI, Komagata K. Transfer of Pseudomonas aminovorans (den Dooren de Jong 1926) to Aminobacter gen. nov. as Aminobacter aminovorans comb. nov. and Description of Aminobacter aganoensis sp. nov. and Aminobacter niigataensis sp. nov. Int J Syst Bacteriol 1992; 42:84–92 [View Article]
    [Google Scholar]
  10. Maynaud G, Willems A, Soussou S, Vidal C, Mauré L et al. Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Syst Appl Microbiol 2012; 35:65–72 [View Article] [PubMed]
    [Google Scholar]
  11. King GM. Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. Appl Environ Microbiol 2003; 69:7257–7265 [View Article] [PubMed]
    [Google Scholar]
  12. Meyer O, Stackebrandt E, Auling G. n.d. Reclassification of ubiquinone q-10 containing carboxidotrophic bacteria: transfer of “[Pseudomonas] carboxydovorans” OM5T to Oligotropha, gen. nov., as Oligotropha carboxidovorans, comb. nov., transfer of “[Alcaligenes] carboxydus” DSM 1086T to Carbophilus, gen. nov., as Carbophilus carboxidus, comb. nov., transfer of “[Pseudomonas] compransoris” DSM 1231T to Zavarzinia, gen. nov., as Zavarzinia compransoris, comb. nov., and amended descriptions of the new genera. Syst Appl Microbiol [View Article]
    [Google Scholar]
  13. Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol 2012; 10:828–840 [View Article] [PubMed]
    [Google Scholar]
  14. Novelli PC. CO in the atmosphere: measurement techniques and related issues. Chemosphere Global Change Sci 1999115–126
    [Google Scholar]
  15. Greening C, Grinter R. Microbial oxidation of atmospheric trace gases. Nat Rev Microbiol 2022; 20:513–528 [View Article] [PubMed]
    [Google Scholar]
  16. Palmer JL, Hilton S, Picot E, Bending GD, Schäfer H. Tree phyllospheres are a habitat for diverse populations of CO ‐oxidizing bacteria. Environm Microbiol 2021; 23:6309–6327 [View Article]
    [Google Scholar]
  17. Atamna‐Ismaeel N, Finkel OM, Glaser F, Sharon I, Schneider R et al. Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ Microbiol 2012; 14:140–146 [View Article]
    [Google Scholar]
  18. Meyer O, Schlegel HG. Biology of aerobic carbon monoxide-oxidizing bacteria. Annu Rev Microbiol 1983; 37:277–310 [View Article]
    [Google Scholar]
  19. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article]
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  21. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. n.d. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol [View Article]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  25. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article]
    [Google Scholar]
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  27. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article]
    [Google Scholar]
  28. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  30. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  31. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Göker M. n.d. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10: [View Article]
    [Google Scholar]
  33. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  34. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  35. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  36. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  37. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  38. Sun J, Lu F, Luo Y, Bie L, Xu L et al. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res 2023; 51:W397–W403 [View Article]
    [Google Scholar]
  39. Kuzmanović N, Fagorzi C, Mengoni A, Lassalle F, diCenzo GC. Taxonomy of Rhizobiaceae revisited: proposal of a new framework for genus delimitation. Int J Syst Evol Microbiol 2022; 72:005243 [View Article] [PubMed]
    [Google Scholar]
  40. Gerhardt K, Ruiz-Perez CA, Rodriguez-R LM, Jain C, Tiedje JM et al. FastAAI: efficient estimation of genome average amino acid identity and phylum-level relationships using tetramers of universal proteins. Nucleic Acids Res 2025; 53:gkaf348 [View Article] [PubMed]
    [Google Scholar]
  41. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 2014; 52:1501–1510 [View Article]
    [Google Scholar]
  42. Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder - Distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 2013; 8:e77302 [View Article]
    [Google Scholar]
  43. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article]
    [Google Scholar]
  44. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res 2023; 51:D690–D699 [View Article]
    [Google Scholar]
  45. Claus D. A standardized gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article]
    [Google Scholar]
  46. Valentine RC, Shapiro BM, Stadtman ER. Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry 1968; 7:2143–2152 [View Article] [PubMed]
    [Google Scholar]
  47. Barrow GF. Cowan and Steel’s Manual for the Identification of Medical Bacteria. 3rd ed Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  48. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note;
    [Google Scholar]
  49. Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M et al. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol 2021; 71:004631 [View Article]
    [Google Scholar]
  50. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  51. Banerjee S, Bedics A, Tóth E, Kriszt B, Soares AR et al. Isolation of Pseudomonas aromaticivorans sp. nov from a hydrocarbon-contaminated groundwater capable of degrading benzene-, toluene-, m- and p-xylene under microaerobic conditions. Front Microbiol 2022; 13:929128 [View Article] [PubMed]
    [Google Scholar]
  52. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  53. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300 [View Article] [PubMed]
    [Google Scholar]
  54. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  55. Grivennikova VG, Gladyshev GV, Vinogradov AD. Deactivation of mitochondrial NADH:ubiquinone oxidoreductase (respiratory complex I): Extrinsically affecting factors. Biochim Biophys Acta Bioenerg 2020; 1861:148207 [View Article] [PubMed]
    [Google Scholar]
  56. Hayer-Hartl M, Hartl FU. Chaperone machineries of rubisco - the most abundant enzyme. Trends Biochem Sci 2020; 45:748–763 [View Article]
    [Google Scholar]
  57. Santos Correa S, Schultz J, Lauersen KJ, Soares Rosado A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J Adv Res 2023; 47:75–92 [View Article]
    [Google Scholar]
  58. King GM, Weber CF. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol 2007; 5:107–118 [View Article]
    [Google Scholar]
  59. Seixas AF, Quendera AP, Sousa JP, Silva AFQ, Arraiano CM et al. Bacterial response to oxidative stress and RNA oxidation. Front Genet 2021; 12:821535 [View Article]
    [Google Scholar]
  60. Keto-Timonen R, Hietala N, Palonen E, Hakakorpi A, Lindström M et al. Cold shock proteins: a minireview with special emphasis on Csp-family of enteropathogenic Yersinia. Front Microbiol 2016; 7:1151 [View Article]
    [Google Scholar]
  61. Qamar A, Mysore KS, Senthil-Kumar M. Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens. Front Plant Sci 2015; 6:503 [View Article] [PubMed]
    [Google Scholar]
  62. Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ et al. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 2010; 34:952–985 [View Article]
    [Google Scholar]
  63. Li H-P, Gan Y-N, Yue L-J, Han Q-Q, Chen J et al. Newly Isolated Paenibacillus monticola sp. nov., a novel plant growth-promoting rhizobacteria strain from high-altitude spruce forests in the qilian mountains, china. Front Microbiol 2022; 13:833313 [View Article]
    [Google Scholar]
  64. D’Souza-Ault MR, Smith LT, Smith GM. Roles of N-acetylglutaminylglutamine amide and glycine betaine in adaptation of Pseudomonas aeruginosa to osmotic stress. Appl Environ Microbiol 1993; 59:473–478 [View Article]
    [Google Scholar]
  65. Sagot B, Gaysinski M, Mehiri M, Guigonis J-M, Le Rudulier D et al. Osmotically induced synthesis of the dipeptide N-acetylglutaminylglutamine amide is mediated by a new pathway conserved among bacteria. Proc Natl Acad Sci U S A 2010; 107:12652–12657 [View Article] [PubMed]
    [Google Scholar]
  66. Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat Chem Biol 2007; 3:408–414 [View Article] [PubMed]
    [Google Scholar]
  67. Złoch M, Thiem D, Gadzała-Kopciuch R, Hrynkiewicz K. Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere 2016; 156:312–325 [View Article] [PubMed]
    [Google Scholar]
  68. Loh J, Pierson EA, Pierson LS III, Stacey G, Chatterjee A. Quorum sensing in plant-associated bacteria. Curr Opin Plant Biol 2002; 5:285–290 [View Article] [PubMed]
    [Google Scholar]
  69. De Meyer SE, Andrews M, James EK, Willems A. Mesorhizobium carmichaelinearum sp. nov., isolated from Carmichaelineae spp. root nodules. Int J Syst Evol Microbiol 2019; 69:146–152 [View Article] [PubMed]
    [Google Scholar]
  70. McDonald IR, Kämpfer P, Topp E, Warner KL, Cox MJ et al. Aminobacter ciceronei sp. nov. and Aminobacter lissarensis sp. nov., isolated from various terrestrial environments. Int J Syst Evol Microbiol 2005; 55:1827–1832 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006953
Loading
/content/journal/ijsem/10.1099/ijsem.0.006953
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error