Skip to content
1887

Abstract

The genus (, ) comprises a diverse group of bacteria inhabiting human and animal mucosa, as well as environmental niches such as water, soil and food. While some species are clinically significant pathogens, others play ecological or biotechnological roles. Despite previous taxonomic revisions, remains polyphyletic, necessitating a refined classification. In this study, we conducted comprehensive taxogenomic analyses integrating core protein phylogeny, average amino acid identity and the percentage of conserved proteins, along with 16S rRNA similarities and inferred phylogeny. Our results revealed three distinct phylogenetic clusters within . The core group, comprising NBRC 102154 and closely related species, exhibited strong genomic cohesion. A second cluster, consisting of DSM 14165, CCUG 350 and NBRC 14588, showed greater genetic affinity to GVCNT2, supporting their reassignment to the genus . The third group, represented by CCUG 9405, was phylogenetically distinct, occupying a basal position relative to , indicating the need for its classification within a novel genus within the family , for which we propose the name gen. nov., comb. nov. Phenotypic data compiled from the original published descriptions of the respective species, including fatty acid composition and enzymatic profiles, further corroborated these genomic findings. This study refines taxonomy by clarifying genus boundaries and evolutionary relationships, with implications for ecology and clinical microbiology.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006820
2025-06-20
2025-07-10
Loading full text...

Full text loading...

References

  1. Lwoff A. Révision et démembrement des hemophilae, le genre Moraxella nov. gen. Annales de l’Institut Pasteur 1939; 62:168–176
    [Google Scholar]
  2. Rossau R, Van Landschoot A, Gillis M, De Ley J. Taxonomy of Moraxellaceae fam. nov., a new bacterial family to accommodate the genera Moraxella, Acinetobacter, and Psychrobacter and related organisms. Int J Syst Bacteriol 1991; 41:310–319 [View Article]
    [Google Scholar]
  3. Flores-Félix JD, García-Fraile P, Saati-Santamaría Z. Harmony in diversity: reorganizing the families within the order Pseudomonadales. Mol Phylogenet Evol 2025; 206:108321 [View Article] [PubMed]
    [Google Scholar]
  4. Orla-Jensen S. The main lines of the natural bacterial system. J Bacteriol 1921; 6:263–273 [View Article] [PubMed]
    [Google Scholar]
  5. Hays JP. The genus Moraxella. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. eds The Prokaryotes New York, NY: Springer; 2006 pp 958–987 https://doi.org/10.1007/0-387-30746-X_38
    [Google Scholar]
  6. Juni E, Bøvre K. Moraxella. In Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P et al. eds Bergey’s Manual of Systematics of Archaea and Bacteria 2015 https://doi.org/10.1002/9781118960608.gbm01204
    [Google Scholar]
  7. Angelos J. Moraxella. In Prescott JF, Rycroft AN, Boyce JD, MacInnes JI, Van Immerseel F et al. eds Pathogenesis of Bacterial Infections in Animals 2022 pp 344–360 [View Article]
    [Google Scholar]
  8. Loy JD, Maier G. Moraxella. In McVey DS, Kennedy M, Chengappa MM, Wilkes R. eds Vet Microbiol 2022 pp 176–182 [View Article]
    [Google Scholar]
  9. Ludwig W, Viver T, Westram R, Francisco Gago J, Bustos-Caparros E et al. Release LTP_12_2020, featuring a new ARB alignment and improved 16S rRNA tree for prokaryotic type strains. Syst Appl Microbiol 2021; 44:126218 [View Article] [PubMed]
    [Google Scholar]
  10. Bowman JP, Cavanagh J, Austin JJ, Sanderson K. Novel Psychrobacter species from Antarctic ornithogenic soils. Int J Syst Bacteriol 1996; 46:841–848 [View Article] [PubMed]
    [Google Scholar]
  11. Rossau R, Kersters K, Falsen E, Jantzen E, Segers P et al. Oligella, a new genus including Oligella urethralis comb. nov. (formerly Moraxella urethralis) and Oligella ureolytica sp. nov. (formerly CDC group IVe): relationship to Taylorella equigenitalis and related taxa. Int J Syst Bacteriol 1987; 37:198–210
    [Google Scholar]
  12. Chalita M, Kim YO, Park S, Oh H-S, Cho JH et al. EzBioCloud: a genome-driven database and platform for microbiome identification and discovery. Int J Syst Evol Microbiol 2024; 74:006421 [View Article] [PubMed]
    [Google Scholar]
  13. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  14. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  15. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  16. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008; 24:774–786 [View Article]
    [Google Scholar]
  17. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010; 17:337–354 [View Article] [PubMed]
    [Google Scholar]
  18. Swofford DL. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0 Sunderland Sinauer Associates; 2002
    [Google Scholar]
  19. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  20. Hölzer M. POCP-nf: an automatic Nextflow pipeline for calculating the percentage of conserved proteins in bacterial taxonomy. Bioinformatics 2024; 40:btae175 [View Article] [PubMed]
    [Google Scholar]
  21. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  22. Kodjo A, Tønjum T, Richard Y, Bøvre K. Moraxella caprae sp. nov., a new member of the classical Moraxellae with very close affinity to Moraxella bovis. Int J Syst Bacteriol 1995; 45:467–471 [View Article] [PubMed]
    [Google Scholar]
  23. Li FX, Zhao WH, Li ZH, Song JL, Gao HF. Moraxella haemolytica sp. nov., isolated from a goat with respiratory disease. Arch Microbiol 2023; 206:45 [View Article] [PubMed]
    [Google Scholar]
  24. Hughes DE, Pugh GWJ. Isolation and description of a Moraxella from horses with conjunctivitis. Am J Vet Res 1970; 31:457–462 [PubMed]
    [Google Scholar]
  25. Jannes G, Vaneechoutte M, Lannoo M, Gillis M, Vancanneyt M et al. Polyphasic taxonomy leading to the proposal of Moraxella canis sp. nov. for Moraxella catarrhalis-like strains. Int J Syst Bacteriol 1993; 43:438–449 [View Article] [PubMed]
    [Google Scholar]
  26. Henriksen SD, Bovre K. The taxonomy of the genera Moraxella and Neisseria. J Gen Microbiol 1968; 51:387–392 [View Article] [PubMed]
    [Google Scholar]
  27. Murray EGD. Genus II. Moraxella Lwoff. In Breed RS, Murray EGD, Hitchens AP. eds Bergey’s Manual of Determinative Bacteriology, 6th ed. Baltimore: The Williams & Wilkins Co; 1948 pp 590–592
    [Google Scholar]
  28. Wilkes RP, Anis E, Kattoor JJ. Moraxella oculi sp. nov., isolated from a cow with infectious bovine keratoconjunctivitis. Int J Syst Evol Microbiol 2024; 74:6281 [View Article] [PubMed]
    [Google Scholar]
  29. Angelos JA, Spinks PQ, Ball LM, George LW. Moraxella bovoculi sp. nov., isolated from calves with infectious bovine keratoconjunctivitis. Int J Syst Evol Microbiol 2007; 57:789–795 [View Article] [PubMed]
    [Google Scholar]
  30. Vela AI, Sánchez-Porro C, Aragón V, Olvera A, Domínguez L et al. Moraxella porci sp. nov., isolated from pigs. Int J Syst Evol Microbiol 2010; 60:2446–2450 [View Article] [PubMed]
    [Google Scholar]
  31. Vela AI, Arroyo E, Aragón V, Sánchez-Porro C, Latre MV et al. Moraxella pluranimalium sp. nov., isolated from animal specimens. Int J Syst Evol Microbiol 2009; 59:671–674 [View Article] [PubMed]
    [Google Scholar]
  32. Bøvre K, Hagen N. The family Neisseriaceae: rod-shaped species of the genera Moraxella, Acinetobacter, Kingella, and Neisseria, and the Branhamella group of cocci. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG. eds The Prokaryotes a Handbook on Habitats, Isolation and Identification of Bacteria Berlin: Springer-Verlag; 1981 pp 1506–1529
    [Google Scholar]
  33. Li F, Gao H, Zhu P, Li Z, Zhao W et al. Moraxella nasicaprae sp. nov., isolated from a goat with respiratory disease. Curr Microbiol 2023; 80:78 [View Article] [PubMed]
    [Google Scholar]
  34. Li F, Zhao W, Zhu P, Li Z, Song J et al. Moraxella nasibovis sp. nov., isolated from a cow with respiratory disease. Curr Microbiol 2023; 80:305 [View Article] [PubMed]
    [Google Scholar]
  35. Li F, Zhu P, Li Z, Zhao W, Gao H et al. Moraxella nasovis sp. nov., isolated from a sheep with respiratory disease. Int J Syst Evol Microbiol 2022; 72:5511 [View Article] [PubMed]
    [Google Scholar]
  36. Xie CH, Yokota A. Transfer of the misnamed [Alysiella] sp. IAM 14971 (=ATCC 29468) to the genus Moraxella as Moraxella oblonga sp. nov. Int J Syst Evol Microbiol 2005; 55:331–334 [View Article] [PubMed]
    [Google Scholar]
  37. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300 [View Article] [PubMed]
    [Google Scholar]
  38. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Applied Microbiol 2008; 31:241–250 [View Article]
    [Google Scholar]
  39. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  40. Humphreys GJ, Oates A, Ledder RG, McBain AJ. Faucicola mancuniensis gen. nov., sp. nov., isolated from the human oropharynx. Int J Syst Evol Microbiol 2015; 65:11–14 [View Article] [PubMed]
    [Google Scholar]
  41. Bovre K, Henriksen SD. A new Moraxella species, Moraxella osloensis, and a revised description of Moraxella nonliquefaciens. Int J Systc Bacteriol 1967; 17:127–135 [View Article]
    [Google Scholar]
  42. Das L, Das SK. Moraxella tetraodonis sp. nov., isolated from freshwater pufferfish (Tetraodon cutcutia) skin. Arch Microbiol 2022; 204:389 [View Article] [PubMed]
    [Google Scholar]
  43. Bovre K, Fuglesang JE, Hagen N, Jantzen E, Froholm LO. Moraxella atlantae sp. nov. and its distinction from Moraxella phenylpyruvica. Int J Systc Bacteriol 1976; 26:511–521 [View Article]
    [Google Scholar]
  44. Kodjo A, Richard Y, Tønjum T. Moraxella boevrei sp. nov., a new Moraxella species found in goats. Int J Syst Bacteriol 1997; 47:115–121 [View Article] [PubMed]
    [Google Scholar]
  45. Vandamme P, Gillis M, Vancanneyt M, Hoste B, Kersters K et al. Moraxella lincolnii sp. nov., isolated from the human respiratory tract, and reevaluation of the taxonomic position of Moraxella osloensis. Int J Syst Bacteriol 1993; 43:474–481 [View Article] [PubMed]
    [Google Scholar]
  46. Park M-J, Kim YJ, Park M, Yu J, Namirimu T et al. Establishment of genome based criteria for classification of the family Desulfovibrionaceae and proposal of two novel genera, Alkalidesulfovibrio gen. nov. and Salidesulfovibrio gen. nov. Front Microbiol 2022; 13:738205 [View Article] [PubMed]
    [Google Scholar]
  47. Sangal V, Goodfellow M, Blom J, Tan GYA, Klenk H-P et al. Revisiting the taxonomic status of the biomedically and industrially important genus Amycolatopsis, using a phylogenomic approach. Front Microbiol 2018; 9:2281 [View Article] [PubMed]
    [Google Scholar]
  48. Xu Z, Masuda Y, Wang X, Ushijima N, Shiratori Y et al. Genome-based taxonomic rearrangement of the order Geobacterales Including the description of Geomonas azotofigens sp. nov. and Geomonas diazotrophica sp. nov. Front Microbiol 2021; 12:12 [View Article]
    [Google Scholar]
  49. Oren A, Arahal DR, Göker M, Moore ERB, Rossello-Mora R et al. International Code of Nomenclature of Prokaryotes. Prokaryotic Code (2022 Revision). Int J Syst Evol Microbiol 2023; 73:005585 [View Article]
    [Google Scholar]
  50. Embers ME, Doyle LA, Whitehouse CA, Selby EB, Chappell M et al. Characterization of a Moraxella species that causes epistaxis in macaques. Vet Microbiol 2011; 147:367–375 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006820
Loading
/content/journal/ijsem/10.1099/ijsem.0.006820
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error