Skip to content
1887

Abstract

Three Gram-stain-negative, rod-shaped, motile bacterial strains, each with a single polar flagellum, designated LB3P38, LT1P18 and ZB1P45, were isolated from glacier samples on the Tibetan Plateau, P.R. China. These strains grew at temperatures ranging from −2 to 32 °C (optimum 25–30 °C) and at pH values of 5.0–11.0 (optimum pH 7.0). The similarities of 16S rRNA gene sequences among these strains ranged from 99.67% to 99.93%. Phylogenetic analysis based on 16S rRNA gene sequences confirmed their affiliation with the genus . Phylogenomic analysis positioned these strains in close relation to PMCC 200367 and LMG 19851. Average nucleotide identity values and digital DNA–DNA hybridization values between these strains and other type strains of the genus were below 94.6% and 63.4%, respectively. The predominant fatty acids identified in these strains were C, C cyclo and summed feature 3 (C c and/or C c). Based on the combined phenotypic and phylogenetic evidence, each strain is proposed to represent a novel species within the genus , with the names sp. nov. (type strain=LB3 P38=CGMCC 1.11284=JCM 37126), sp. nov. (type strain=LT1 P18=CGMCC 1.11310=JCM 37131) and sp. nov. (type strain=ZB1 P45=CGMCC 1.23235=JCM 37141) proposed.

Keyword(s): glacier , phylogenomic and Pseudomonas
Funding
This study was supported by the:
  • Beijing Municipal Science & Technology Project, China (Award Z241100007724009)
    • Principle Award Recipient: QingLiu
  • Biological Resources Programme, Chinese Academy of Sciences (Award CAS-TAX-24-024)
    • Principle Award Recipient: Yu-HuaXin
  • National Natural Science Foundation of China (Award 32170007)
    • Principle Award Recipient: QingLiu
  • Strategic Priority Research Program of the Chinese Academy of Sciences (Award XDB0810000)
    • Principle Award Recipient: QingLiu
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006799
2025-06-06
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/75/6/ijsem006799.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006799&mimeType=html&fmt=ahah

References

  1. Migula W. Über ein neues system der bakterien. Arb Bakteriol Inst Karlsruhe 1894; 1:235–328
    [Google Scholar]
  2. Lalucat J, Mulet M, Gomila M, García-Valdés EJG. Genomics in bacterial taxonomy: impact on the genus Pseudomonas. Genes 2020; 11:139 [View Article] [PubMed]
    [Google Scholar]
  3. Hameed A, Shahina M, Lin S-Y, Liu Y-C, Young C-C. Pseudomonas hussainii sp. nov., isolated from droppings of a seashore bird, and emended descriptions of Pseudomonas pohangensis, Pseudomonas benzenivorans and Pseudomonas segetis. Int J Syst Evol Microbiol 2014; 64:2330–2337 [View Article] [PubMed]
    [Google Scholar]
  4. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  5. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q et al. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol 2018; 20:2142–2159 [View Article] [PubMed]
    [Google Scholar]
  6. Qiu M, Li Y, Liu Q, Zhang X, Huang Y et al. Pseudomonas machongensis sp. nov. and Stenotrophomonas capsici sp. nov., isolated from wilted pepper plants. Int J Syst Evol Microbiol 2024; 74:006550 [View Article] [PubMed]
    [Google Scholar]
  7. Ge H-Y, Zhang Y-H, Hu Y-Q, Li H-R, Han W et al. Pseudomonas paeninsulae sp. nov. and Pseudomonas svalbardensis sp. nov., isolated from Antarctic intertidal sediment and Arctic soil, respectively. Int J Syst Evol Microbiol 2024; 74:006466 [View Article] [PubMed]
    [Google Scholar]
  8. Morris CE, Sands DC, Vinatzer BA, Glaux C, Guilbaud C et al. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J 2008; 2:321–334 [View Article] [PubMed]
    [Google Scholar]
  9. Yang GL, Hou SG, Le Baoge R, Li ZG, Xu H et al. Differences in bacterial diversity and communities between glacial snow and glacial soil on the chongce ice cap, West Kunlun Mountains. Sci Rep 2016; 6:36548 [View Article] [PubMed]
    [Google Scholar]
  10. Palleroni NJ. Pseudomonas. In Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P. eds Bergey’s Manual of Systematics of Archaea and Bacteria 2015
    [Google Scholar]
  11. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991 pp 115–175
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  13. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  18. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  19. Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat Methods 2023; 20:1203–1212 [View Article] [PubMed]
    [Google Scholar]
  20. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  21. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genom 2021; 7:000685 [View Article] [PubMed]
    [Google Scholar]
  22. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  23. Kim J, Na S-I, Kim D, Chun J. UBCG2: Up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609–615 [View Article] [PubMed]
    [Google Scholar]
  24. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  26. Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R et al. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS One 2016; 11:e0150183 [View Article] [PubMed]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  28. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  29. Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  30. Smibert RM, Krieg NR. Phenotypic Characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  31. Sasser M. MIDI Technical Note 101: identification of bacteria by gas chromatography of cellular fatty acids. Newark. DE: MIDI; 1990
/content/journal/ijsem/10.1099/ijsem.0.006799
Loading
/content/journal/ijsem/10.1099/ijsem.0.006799
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error