Skip to content
1887

Abstract

In September 2018, Hurricane Florence resulted in major flooding in North Carolina, USA. Efforts to isolate and other spp. from Hurricane Florence floodwaters repeatedly yielded non-haemolytic -like isolates that could not be readily assigned to known taxa. Whole-genome sequence analyses against the 28 currently known species confirmed that the isolates constitute two new taxa within the genus . Taxon I, with one isolate, showed the highest similarity to with an average nucleotide identity of 85.3±4.4% and an DNA–DNA hybridization (DDH) of 32.4% (range: 30–35%), differing from the latter by its ability to reduce nitrate, ferment -ribose and sucrose, and by its inability to produce catalase or ferment -trehalose and -lactose. Taxon II, represented by 11 isolates, showed the highest similarity to with an average nucleotide identity of 92.64±3.8% and an DDH of 49.9% (range: 47.3–52.5%), differing from the latter by its ability to ferment -arabinose and its inability to ferment -rhamnose, -galactose, -lactose and -melibiose. The names sp. nov. and subsp. subsp. nov. are proposed for taxon I and II, respectively, with type strains CLIP 2022/01175 (F6L-1A=CIP 112444 = DSM 117029) and CLIP 2022/01000 (F66L-1A=CIP 112443 = DSM 117030), respectively. Both taxa lack known pathogenic islands, suggesting a lack of pathogenicity for humans.

Funding
This study was supported by the:
  • Department of Food, Nutrition and Bioprocessing Sciences, North Carolina State UniversityMetro North Hospital and Health Service
    • Principle Award Recipient: NotApplicable
  • College of Agriculture and Life Sciences, North Carolina State University
    • Principle Award Recipient: NotApplicable
  • National Institute of Food and Agriculture (Award 2018-07464)
    • Principle Award Recipient: NotApplicable
  • International Life Sciences Institute (ILSI) North America Food Microbiology Committee
    • Principle Award Recipient: NotApplicable
  • Santé Publique France
    • Principle Award Recipient: NotApplicable
  • Inserm
    • Principle Award Recipient: NotApplicable
  • Institut Pasteur
    • Principle Award Recipient: NotApplicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006774
2025-05-13
2025-06-22
Loading full text...

Full text loading...

References

  1. De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. Bergey’s manual of systematic bacteriology: vol. 3; 2009 www.springer.com
  2. Orsi RH, Wiedmann M. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl Microbiol Biotechnol 2016; 100:5273–5287 [View Article] [PubMed]
    [Google Scholar]
  3. Chiara M, Caruso M, D’Erchia AM, Manzari C, Fraccalvieri R et al. Comparative genomics of Listeria sensu lato: genus-wide differences in evolutionary dynamics and the progressive gain of complex, potentially pathogenicity-related traits through lateral gene transfer. Genome Biol Evol 2015; 7:2154–2172 [View Article] [PubMed]
    [Google Scholar]
  4. Pirie JH. The genus Listerella Pirie. Science 1940; 91:383–383 [View Article]
    [Google Scholar]
  5. Seeliger HPR. Apathogene listerien: L. innocua sp.n. (Seeliger et Schoofs, 1977). Zentralbl Bakteriol Mikrobiol Hyg A Med Mikrobiol Infekt Parasitol 1981; 249:487–493 [View Article]
    [Google Scholar]
  6. Rocourt J, Grimont PAD. Listeria welshimeri sp. nov. and Listeria seeligeri sp. nov. Int J Syst Bacteriol 1983; 33:866–869 [View Article]
    [Google Scholar]
  7. Seeliger HPR, Rocourt J, Schrettenbrunner A, Grimont PAD, Jones D. Listeria ivanovii sp. nov. Int J Syst Bacteriol 1984; 34:336–337 [View Article]
    [Google Scholar]
  8. Graves LM, Helsel LO, Steigerwalt AG, Morey RE, Daneshvar MI et al. Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. Int J Syst Evol Microbiol 2010; 60:1280–1288 [View Article] [PubMed]
    [Google Scholar]
  9. Carlin CR, Liao J, Weller D, Guo X, Orsi R et al. Listeria cossartiae sp. nov., Listeria farberi sp. nov., Listeria immobilis sp. nov., Listeria portnoyi sp. nov. and Listeria rustica sp. nov., isolated from agricultural water and natural environment. Int J Syst Evol Microbiol 2021; 71:004795 [View Article] [PubMed]
    [Google Scholar]
  10. Hudson LK, Chaggar HK, Schamp CN, Claxton ML, Bryan DW et al. Phenotypic characterization and analysis of complete genomes of two distinct strains of the proposed species “L. swaminathanii”. Sci Rep 2022; 12:9137 [View Article] [PubMed]
    [Google Scholar]
  11. Errebo Larsen H, Seeliger H. A mannitol fermenting Listeria, Listeria grayi sp. n. In Proceedings of the Third International Symposium on Listeriosis Bilthoven: 1966
    [Google Scholar]
  12. Leclercq A, Clermont D, Bizet C, Grimont PAD, Le Flèche-Matéos A et al. Listeria rocourtiae sp. nov. Int J Syst Evol Microbiol 2010; 60:2210–2214 [View Article] [PubMed]
    [Google Scholar]
  13. Lang Halter E, Neuhaus K, Scherer S. Listeria weihenstephanensis sp. nov., isolated from the water plant Lemna trisulca taken from a freshwater pond. Int J Syst Evol Microbiol 2013; 63:641–647 [View Article] [PubMed]
    [Google Scholar]
  14. den Bakker HC, Warchocki S, Wright EM, Allred AF, Ahlstrom C et al. Listeria floridensis sp. nov., Listeria aquatica sp. nov., Listeria cornellensis sp. nov., Listeria riparia sp. nov. and Listeria grandensis sp. nov., from agricultural and natural environments. Int J Syst Evol Microbiol 2014; 64:1882–1889 [View Article] [PubMed]
    [Google Scholar]
  15. Weller D, Andrus A, Wiedmann M, den Bakker HC. Listeria booriae sp. nov. and Listeria newyorkensis sp. nov., from food processing environments in the USA. Int J Syst Evol Microbiol 2015; 65:286–292 [View Article] [PubMed]
    [Google Scholar]
  16. Núñez-Montero K, Leclercq A, Moura A, Vales G, Peraza J et al. Listeria costaricensis sp. nov. Int J Syst Evol Microbiol 2018; 68:844–850 [View Article] [PubMed]
    [Google Scholar]
  17. Doijad SP, Poharkar KV, Kale SB, Kerkar S, Kalorey DR et al. Listeria goaensis sp. nov. Int J Syst Evol Microbiol 2018; 68:3285–3291 [View Article] [PubMed]
    [Google Scholar]
  18. Leclercq A, Moura A, Vales G, Tessaud-Rita N, Aguilhon C et al. Listeria thailandensis sp. nov. Int J Syst Evol Microbiol 2019; 69:74–81 [View Article] [PubMed]
    [Google Scholar]
  19. Quereda JJ, Leclercq A, Moura A, Vales G, Gómez-Martín Á et al. Listeria valentina sp. nov., isolated from a water trough and the faeces of healthy sheep. Int J Syst Evol Microbiol 2020; 70:5868–5879 [View Article] [PubMed]
    [Google Scholar]
  20. Raufu IA, Moura A, Vales G, Ahmed OA, Aremu A et al. Listeria ilorinensis sp. nov., isolated from cow milk cheese in Nigeria. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  21. Guillet C, Join-Lambert O, Le Monnier A, Leclercq A, Mechaï F et al. Human listeriosis caused by Listeria ivanovii. Emerg Infect Dis 2010; 16:136–138 [View Article] [PubMed]
    [Google Scholar]
  22. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A et al. Foodborne illness acquired in the United States--major pathogens. Emerg Infect Dis 2011; 17:7–15 [View Article] [PubMed]
    [Google Scholar]
  23. National Weather Service Hurricane Florence: September 14, 2018. National Weather Service, Silver Spring, MD; 2018 https://www.weather.gov/ilm/hurricaneflorence
  24. Martin KL, Emanuel RE, Vose JM. Terra incognita: the unknown risks to environmental quality posed by the spatial distribution and abundance of concentrated animal feeding operations. Sci Total Environ 2018; 642:887–893 [View Article] [PubMed]
    [Google Scholar]
  25. Harris AR, Fidan EN, Nelson NG, Emanuel RE, Jass T et al. Microbial contamination in environmental waters of rural and agriculturally-dominated landscapes following Hurricane Florence. ACS EST Water 2021; 1:2012–2019 [View Article]
    [Google Scholar]
  26. Niedermeyer JA, Miller WG, Yee E, Harris A, Emanuel RE et al. Search for Campylobacter spp. reveals high prevalence and pronounced genetic diversity of Arcobacter butzleri in floodwater samples associated with Hurricane Florence in North Carolina, USA. Appl Environ Microbiol 2020; 86:e01118-20 [View Article] [PubMed]
    [Google Scholar]
  27. Lee S, Parsons C, Chen Y, Hanafy Z, Brown E et al. Identification and characterization of a novel genomic island harboring cadmium and arsenic resistance genes in Listeria welshimeri. Biomolecules 2021; 11:560 [View Article] [PubMed]
    [Google Scholar]
  28. Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 2004; 42:3819–3822 [View Article] [PubMed]
    [Google Scholar]
  29. Parsons C, Niedermeyer J, Gould N, Brown P, Strules J et al. Listeria monocytogenes at the human-wildlife interface: black bears (Ursus americanus) as potential vehicles for Listeria. Microb Biotechnol 2020; 13:706–721 [View Article] [PubMed]
    [Google Scholar]
  30. Thouvenot P, Vales G, Bracq-Dieye H, Tessaud-Rita N, Maury MM et al. MALDI-TOF mass spectrometry-based identification of Listeria species in surveillance: a prospective study. J Microbiol Methods 2018; 144:29–32 [View Article] [PubMed]
    [Google Scholar]
  31. Moura A, Lefrancq N, Wirth T, Leclercq A, Borges V et al. Emergence and global spread of Listeria monocytogenes main clinical clonal complex. Sci Adv 2021; 7:eabj9805 [View Article] [PubMed]
    [Google Scholar]
  32. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comp Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  33. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  34. Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 2018; 4:e000206 [View Article] [PubMed]
    [Google Scholar]
  35. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York, N.Y: John Wiley & Sons, Inc; 1991 pp 115–176
    [Google Scholar]
  36. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  37. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  38. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  39. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  40. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Prepr 2016; 4e1900v1 [View Article]
    [Google Scholar]
  41. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  43. Hitchins AD, Jinneman K, Chen Y. Bacteriological Analytical Manual (BAM) - Chapter 10: detection of Listeria monocytogenes in foods and environmental samples, and enumeration of Listeria monocytogenes in foods; 2022 https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam
  44. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300 [View Article] [PubMed]
    [Google Scholar]
  45. Erko S, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 8:6–9
    [Google Scholar]
  46. Moura A, Leclercq A, Vales G, Tessaud-Rita N, Bracq-Dieye H et al. Phenotypic and genotypic antimicrobial resistance of Listeria monocytogenes: an observational study in France. Lancet Reg Health Eur 2024; 37:100800 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006774
Loading
/content/journal/ijsem/10.1099/ijsem.0.006774
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error