Skip to content
1887

Abstract

Strain TB1-E2-13 was isolated from water collected from the Tidal Basin in Washington, D.C., USA, due to the bright purple colour of its colonies, and was taxonomically evaluated with a polyphasic approach. Comparison of a partial 16S rRNA gene sequence found that strain TB1-E2-13 was most similar to species in the genus. For more precise taxonomic inference, a phylogenomic analysis was conducted and indicated that strain TB1-E2-13 was most closely related to , ‘’, and . Analyses of genomic indices found that pairwise comparisons between strain TB1-E2-13 and other members of the genus returned values below the threshold of species novelty. Based on a polyphasic characterization and identifying differences in genomic and taxonomic data, strain TB1-E2-13 represents a novel species, for which the name sp. nov. is proposed. The type strain is TB1-E2-13 (=ATCC TSD-339=JCM 36076).

Funding
This study was supported by the:
  • George Washington University (Award CCAS Impact Award)
    • Principle Award Recipient: JimmyH. Saw
  • University of North Carolina Wilmington (Award Startup Funds)
    • Principle Award Recipient: WendyK. Strangman
  • University of North Carolina Wilmington (Award Startup Funds)
    • Principle Award Recipient: BlakeUshijima
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006768
2025-05-02
2025-05-24
Loading full text...

Full text loading...

References

  1. Gillis M et al. Janthinobacterium. In Trujillo ME. eds Bergey’s Manual of Systematics of Archaea and Bacteria 2015 pp 1–12 [View Article]
    [Google Scholar]
  2. Baldani JI, Rouws L, Cruz LM, Olivares FL, Schmid M et al. The family Oxalobacteraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin, Heidelberg: Springer Berlin Heidelberg; 2014 pp 919–974 [View Article]
    [Google Scholar]
  3. De Ley J, Segers P, Gillis M. Intra- and intergeneric similarities of Chromobacterium and Janthinobacterium ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 1978; 28:154–168 [View Article]
    [Google Scholar]
  4. Ambrožič Avguštin J, Žgur Bertok D, Kostanjšek R, Avguštin G. Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov. Antonie van Leeuwenhoek 2013; 103:763–769 [View Article] [PubMed]
    [Google Scholar]
  5. Bektas KI. Correction to: Janthinobacterium kumbetense sp. nov., a violacein-producing bacterium isolated from spring water in Turkey, and investigation of antimicrobial activity of violacein. FEMS Microbiol Lett 2023; 370:fnac119 [View Article]
    [Google Scholar]
  6. Gong X, Skrivergaard S, Korsgaard BS, Schreiber L, Marshall IPG et al. High quality draft genome sequence of Janthinobacterium psychrotolerans sp. nov., isolated from a frozen freshwater pond. Stand Genomic Sci 2017; 12:8 [View Article] [PubMed]
    [Google Scholar]
  7. Lincoln SP, Fermor TR, Tindall BJ. Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of agaricus bisporus. Int J Syst Evol Microbiol 1999; 49:1577–1589 [View Article]
    [Google Scholar]
  8. Lu H, Deng T, Cai Z, Liu F, Yang X et al. Janthinobacterium violaceinigrum sp. nov., Janthinobacterium aquaticum sp. nov. and Janthinobacterium rivuli sp. nov., isolated from a subtropical stream in China. Int J Syst Evol Microbiol 2020; 70:2719–2725 [View Article] [PubMed]
    [Google Scholar]
  9. Park S, Kim I, Chhetri G, So Y, Jung Y et al. Roseateles albus sp. nov., Roseateles koreensis sp. nov. and Janthinobacterium fluminis sp. nov., isolated from freshwater at jucheon River, and emended description of Roseateles aquaticus comb. nov. Int J Syst Evol Microbiol 2023; 73: [View Article]
    [Google Scholar]
  10. Jung WJ, Kim SW, Giri SS, Kim HJ, Kim SG et al. Janthinobacterium tructae sp. nov., isolated from kidney of rainbow trout (oncorhynchus mykiss). Pathogens 2021; 10:229 [View Article]
    [Google Scholar]
  11. Patijanasoontorn B, Boonma P, Wilailackana C, Sitthikesorn J, Lumbiganon P et al. Hospital acquired Janthinobacterium lividum septicemia in Srinagarind Hospital. J Med Assoc Thai 1992; 75 Suppl 2:6–10 [PubMed]
    [Google Scholar]
  12. Pantanella F, Berlutti F, Passariello C, Sarli S, Morea C et al. Violacein and biofilm production in Janthinobacterium lividum. J Appl Microbiol 2007; 102:992–999 [View Article] [PubMed]
    [Google Scholar]
  13. Johnsen MG, Hansen OC, Stougaard P. Isolation, characterization and heterologous expression of a novel chitosanase from Janthinobacterium sp. strain 4239. Microb Cell Fact 2010; 9:5 [View Article] [PubMed]
    [Google Scholar]
  14. Rossolini GM, Condemi MA, Pantanella F, Docquier JD, Amicosante G et al. Metallo-beta-lactamase producers in environmental microbiota: new molecular class B enzyme in Janthinobacterium lividum. Antimicrob Agents Chemother 2001; 45:837–844 [View Article] [PubMed]
    [Google Scholar]
  15. Ramdass AC, Rampersad SN. Molecular signatures of Janthinobacterium lividum from trinidad support high potential for crude oil metabolism. BMC Microbiol 2021; 21:287 [View Article] [PubMed]
    [Google Scholar]
  16. Durán N, Justo GZ, Ferreira CV, Melo PS, Cordi L et al. Violacein: properties and biological activities. Biotechnol Appl Biochem 2007; 48:127–133 [View Article] [PubMed]
    [Google Scholar]
  17. Subramaniam S, Ravi V, Sivasubramanian A. Synergistic antimicrobial profiling of violacein with commercial antibiotics against pathogenic micro-organisms. Pharm Biol 2014; 52:86–90 [View Article] [PubMed]
    [Google Scholar]
  18. Bilsland E, Tavella TA, Krogh R, Stokes JE, Roberts A et al. Antiplasmodial and trypanocidal activity of violacein and deoxyviolacein produced from synthetic operons. BMC Biotechnol 2018; 18:22 [View Article] [PubMed]
    [Google Scholar]
  19. Anjum K, Sadiq I, Chen L, Kaleem S, Li X-C et al. Novel antifungal janthinopolyenemycins A and B from A co-culture of marine-associated Janthinobacterium spp. ZZ145 and ZZ148. Tetrahedron Lett 2018; 59:3490–3494 [View Article]
    [Google Scholar]
  20. Asencio G, Lavin P, Alegría K, Domínguez M, Bello H et al. Antibacterial activity of the antarctic bacterium Janthinobacterium sp. SMN 33.6 against multi-resistant gram-negative bacteria. Electron J Biotechnol 2014; 17:1–5 [View Article]
    [Google Scholar]
  21. Durán N, Castro GR, Portela RWD, Fávaro WJ, Durán M et al. Violacein and its antifungal activity: comments and potentialities. Lett Appl Microbiol 2022; 75:796–803 [View Article] [PubMed]
    [Google Scholar]
  22. Masuelli L, Pantanella F, La Regina G, Benvenuto M, Fantini M et al. Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo. Tumour Biol 2016; 37:3705–3717 [View Article] [PubMed]
    [Google Scholar]
  23. Kilpatrick AM, Briggs CJ, Daszak P. The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends Ecol Evol 2010; 25:109–118 [View Article] [PubMed]
    [Google Scholar]
  24. Becker MH, Brucker RM, Schwantes CR, Harris RN, Minbiole KPC. The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl Environ Microbiol 2009; 75:6635–6638 [View Article] [PubMed]
    [Google Scholar]
  25. Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 2009; 3:818–824 [View Article] [PubMed]
    [Google Scholar]
  26. Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC et al. Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb Ecol 2018; 75:1049–1062 [View Article] [PubMed]
    [Google Scholar]
  27. McCauley EP, Haltli B, Kerr RG. Description of Pseudobacteriovorax antillogorgiicola gen. nov., sp. nov., a bacterium isolated from the gorgonian octocoral antillogorgia elisabethae, belonging to the family Pseudobacteriovoracaceae fam. nov., within the order bdellovibrionales. Int J Syst Evol Microbiol 2015; 65:522–530 [View Article] [PubMed]
    [Google Scholar]
  28. Buxton R. Nitrate and nitrite reduction test protocols. In In Laboratory Protocols Washington, DC, USA: American Society for Microbiology; 2011 https://www.asmscience.org/content/education/protocol/protocol.3660
    [Google Scholar]
  29. Gauthier MJ. Morphological, physiological, and biochemical characteristics of some violet-pigmented bacteria isolated from seawater. Can J Microbiol 1976; 22:138–149 [View Article] [PubMed]
    [Google Scholar]
  30. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307 [PubMed]
    [Google Scholar]
  31. Sneath PHA. Cultural and biochemical characteristics of the genus Chromobacterium. J Gen Microbiol 1956; 15:70–98 [View Article]
    [Google Scholar]
  32. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. eds Methods for General and Molecular Microbiology 2007 pp 330–393
    [Google Scholar]
  33. Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS One 2015; 10:e0128036 [View Article] [PubMed]
    [Google Scholar]
  34. Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol 2021; 22:266 [View Article] [PubMed]
    [Google Scholar]
  35. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  36. Wick RR, Holt KE. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Res 2019; 8:2138 [View Article] [PubMed]
    [Google Scholar]
  37. Vaser R, Šikić M. Time- and memory-efficient genome assembly with Raven. Nat Comput Sci 2021; 1:332–336 [View Article] [PubMed]
    [Google Scholar]
  38. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article] [PubMed]
    [Google Scholar]
  39. Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol 2022; 18:e1009802 [View Article] [PubMed]
    [Google Scholar]
  40. Zimin AV, Salzberg SL. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput Biol 2020; 16:e1007981 [View Article] [PubMed]
    [Google Scholar]
  41. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  42. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  43. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  44. Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics 2005; 21:537–539 [View Article] [PubMed]
    [Google Scholar]
  45. Grigoriev A. Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res 1998; 26:2286–2290 [View Article] [PubMed]
    [Google Scholar]
  46. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO Update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 2021; 38:4647–4654 [View Article] [PubMed]
    [Google Scholar]
  47. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  48. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res 2023; 51:D690–D699 [View Article] [PubMed]
    [Google Scholar]
  49. Arndt D, Marcu A, Liang Y, Wishart DS. PHAST, PHASTER and PHASTEST: tools for finding prophage in bacterial genomes. Brief Bioinform 2019; 20:1560–1567 [View Article] [PubMed]
    [Google Scholar]
  50. Brown CL, Mullet J, Hindi F, Stoll JE, Gupta S et al. mobileOG-db: a manually curated database of protein families mediating the life cycle of bacterial mobile genetic elements. Appl Environ Microbiol 2022; 88:e0099122 [View Article] [PubMed]
    [Google Scholar]
  51. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for cas proteins. Nucleic Acids Res 2018; 46:W246–W251 [View Article] [PubMed]
    [Google Scholar]
  52. Grant JR, Enns E, Marinier E, Mandal A, Herman EK et al. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 2023; 51:W484–W492 [View Article]
    [Google Scholar]
  53. Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 2021; 9:37 [View Article] [PubMed]
    [Google Scholar]
  54. Starikova EV, Tikhonova PO, Prianichnikov NA, Rands CM, Zdobnov EM et al. Phigaro: high-throughput prophage sequence annotation. Bioinformatics 2020; 36:3882–3884 [View Article] [PubMed]
    [Google Scholar]
  55. Pearson WR. An introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinformatics 2013; Chapter 3:3 [View Article] [PubMed]
    [Google Scholar]
  56. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  57. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  58. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2015; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  59. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  60. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  61. Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res 2020; 48:8883–8900 [View Article] [PubMed]
    [Google Scholar]
  62. Weimann A, Mooren K, Frank J, Pope PB, Bremges A et al. From genomes to phenotypes: traitar, the microbial trait analyzer. mSystems 2016; 1:e00101–00116 [View Article] [PubMed]
    [Google Scholar]
  63. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
  64. Aebischer T, Fischer A, Walduck A, Schlötelburg C, Lindig M et al. Vaccination prevents Helicobacter pylori-induced alterations of the gastric flora in mice. FEMS Immunol Med Microbiol 2006; 46:221–229 [View Article] [PubMed]
    [Google Scholar]
  65. Sambrook J. Molecular Cloning: A Laboratory Manual / Joseph Sambrook, David W Cold Spring Harbor, N.Y: Russell. Cold Spring Harbor Laboratory; 2001
    [Google Scholar]
  66. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  67. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  68. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  69. Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 2022; 50:W276–W279 [View Article] [PubMed]
    [Google Scholar]
  70. Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat Commun 2020; 11:2500 [View Article] [PubMed]
    [Google Scholar]
  71. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article] [PubMed]
    [Google Scholar]
  72. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  73. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  74. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  75. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 2018; 68:2386–2392 [View Article] [PubMed]
    [Google Scholar]
  76. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  77. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:0063000 [View Article] [PubMed]
    [Google Scholar]
  78. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article] [PubMed]
    [Google Scholar]
  79. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  80. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  81. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  82. Frediansyah A, Manuhara YSW, Kristanti AN, Luqman A, Wibowo AT. Fermentation in minimal media and fungal elicitation enhance violacein and deoxyviolacein production in two Janthinobacterium Strains. Fermentation 2022; 8:714 [View Article]
    [Google Scholar]
  83. Ballestriero F, Daim M, Penesyan A, Nappi J, Schleheck D et al. Antinematode activity of Violacein and the role of the insulin/IGF-1 pathway in controlling violacein sensitivity in Caenorhabditis elegans. PLoS One 2014; 9:e109201 [View Article] [PubMed]
    [Google Scholar]
  84. Meganathan R, Kwon O. Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q). EcoSal Plus 2009; 3:10 [View Article] [PubMed]
    [Google Scholar]
  85. Patel NB, Lawson PA. The strength of chemotaxonomy. In Bridge P, Smith D, Stackebrandt E. eds Trends in the Systematics of Bacteria and Fungi Surrey, UK: CABI; 2020 pp 141–167 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006768
Loading
/content/journal/ijsem/10.1099/ijsem.0.006768
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error