Skip to content
1887

Abstract

An aerobic, Gram-stain-positive, rod-shaped and non-motile bacterium, designated strain P10A9, was isolated from the rhizosphere soil of Pu-erh tea plants ( var. ) in an organic tea garden in the Jingmai Pu-erh Tea District, Pu'er City, Yunnan Province, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain P10A9 belongs to the genus , with its closest relative being KCTC 3377 (98.4% similarity). The major fatty acids (>10.0% of the total) were anteiso-C and anteiso-C. The predominant respiratory quinone was MK-9(H), with MK-8(H) as a minor component. The major polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and glycolipids. The peptidoglycan contained glutamic acid (Glu), lysine (Lys), aspartic acid (Asp), serine (Ser), alanine (Ala) and glycine (Gly). The genome of strain P10A9 is 4.3 Mbp in size, with a G+C content of 69.2 mol%. Digital DNA–DNA hybridization values between strain P10A9 and other species ranged from 20.8 to 25.1%, and the average nucleotide identity values were significantly below the species delineation threshold (95–96%). Based on these results, strain P10A9 represents a novel species of the genus , for which the name sp nov. is proposed. The type strain is P10A9 (=CCTCC AB 2024154=KCTC 59368).

Funding
This study was supported by the:
  • Yunnan International Science and Technology Commissioner Project (Award 202403AK140038)
    • Principle Award Recipient: FuJianyang
  • Yunnan Agricultural University Research Initiation Fund Project (Award KY2022-54)
    • Principle Award Recipient: FuJianyang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006752
2025-04-09
2025-04-27
Loading full text...

Full text loading...

References

  1. Zhou Y, Wei W, Wang X, Al E. Proposal of Sinomonas flava gen. nov., sp. nov., and description of Sinomonas atrocyanea comb. nov. to accommodate Arthrobacter atrocyaneus. Int J Syst Evol Microbiol 2009; 59:259–263 [View Article]
    [Google Scholar]
  2. Kuhn DA, Starr MP. Arthrobacter atrocyaneus, n. sp. and its blue pigment. Arch Mikrobiol 1960; 36:175–181
    [Google Scholar]
  3. Zhou Y, Chen X, Zhang Y, Wang W, Xu J. Description of Sinomonas soli sp. nov., reclassification of Arthrobacter echigonensis and Arthrobacter albidus (Ding et al. 2009) as Sinomonas echigonensis comb. nov. and Sinomonas albida comb. nov., respectively, and emended description of the genus Sinomonas. Int J Syst Evol Microbiol 2012; 62:764–769 [View Article]
    [Google Scholar]
  4. Bao YY, Huang Z, Mao DM, Sheng XF, He LY. Sinomonas susongensis sp. nov., isolated from the surface of weathered biotite. Int J Syst Evol Microbiol 2015; 65:1133–1137 [View Article] [PubMed]
    [Google Scholar]
  5. Wan J, Zhou Y, Sun H, Li HP, Yao Q et al. Sinomonas terricola sp. nov., a plant-beneficial bacterium isolated from litchi rhizosphere soil in Guangdong, China. Int J Syst Evol Microbiol 2024; 74:006375 [View Article] [PubMed]
    [Google Scholar]
  6. Guo QQ, Ming H, Meng XL, Huang JR, Duan YY et al. Sinomonas halotolerans sp. nov., an actinobacterium isolated from a soil sample. Antonie van Leeuwenhoek 2015; 108:887–895 [View Article]
    [Google Scholar]
  7. Lee LH, Azman AS, Zainal N, Eng SK, Chan KG et al. Sinomonas humi sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil. Int J Syst Evol Microbiol 2015; 65:996–1002 [View Article] [PubMed]
    [Google Scholar]
  8. Prabhu DM, Quadri SR, Cheng J, Liu L, Chen W et al. Sinomonas mesophila sp. nov., isolated from ancient fort soil. J Antibiot 2015; 68:318–321 [View Article]
    [Google Scholar]
  9. Zhang M-Y, Xie J, Zhang T-Y, Xu H, Cheng J et al. Sinomonas notoginsengisoli sp. nov., isolated from the rhizosphere of Panax notoginseng. Antonie van Leeuwenhoek 2014; 106:827–835 [View Article]
    [Google Scholar]
  10. Khongsai L, Uppada J, Ahamad S, Chintalapati S, Chintalapati VR. Sinomonas cellulolyticus sp. nov., isolated from Loktak lake. Antonie van Leeuwenhoek 2023; 116:1421–1432 [View Article]
    [Google Scholar]
  11. Lee H, Han JY, Kim DU. Sinomonas terrae sp. nov., isolated from an agricultural soil. J Microbiol Biotechnol 2023; 33:909 [View Article]
    [Google Scholar]
  12. Fu Y, Yan R, Liu D, Zhao J, Xiang W et al. Characterization of Sinomonas gamaensis sp. nov., a novel soil bacterium with antifungal activity against Exserohilum turcicum. Microorganisms 2019; 7:170 [View Article] [PubMed]
    [Google Scholar]
  13. Yamamoto T, Hasegawa Y, Lau PCK, Iwaki H. Identification and characterization of a chc gene cluster responsible for the aromatization pathway of cyclohexanecarboxylate degradation in Sinomonas cyclohexanicum ATCC 51369. J Biosci Bioeng 2021; 132:621–629 [View Article] [PubMed]
    [Google Scholar]
  14. Sakamoto M, Hayashi H, Benno Y. Terminal restriction fragment length polymorphism analysis for human fecal microbiota and its application for analysis of complex bifidobacterial communities. Microbiol Immunol 2003; 47:133–142 [View Article] [PubMed]
    [Google Scholar]
  15. Yoon SH, Ha SM, Kwon S, Lim J, Chun J et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  16. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  18. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 1989; 29:170–179 [View Article] [PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Biology 1971; 20:406–416 [View Article]
    [Google Scholar]
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  23. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article]
    [Google Scholar]
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  25. Lin S-H, Liao Y-C. CISA: contig integrator for sequence assembly of bacterial genomes. PLoS One 2013; 8:e60843 [View Article]
    [Google Scholar]
  26. Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics 2005; 21:537–539 [View Article] [PubMed]
    [Google Scholar]
  27. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–9 [View Article] [PubMed]
    [Google Scholar]
  28. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27–30 [View Article] [PubMed]
    [Google Scholar]
  29. Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res 2022; 50:D912–D917 [View Article] [PubMed]
    [Google Scholar]
  30. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013; 57:3348–3357 [View Article] [PubMed]
    [Google Scholar]
  31. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014; 42:D490–5 [View Article] [PubMed]
    [Google Scholar]
  32. Murray R, Doetsch R, Robinow C. Determinative and cytological light microscopy. Methods for general and molecular biology 1994; pp21–41
    [Google Scholar]
  33. Smibert RM, Krieg NR. Phenotypic characterization. In Methods for General and Molecular Biology 1994 pp 607–654
    [Google Scholar]
  34. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  35. Piao A-L, Feng X-M, Nogi Y, Han L, Li Y et al. Sphingomonas qilianensis sp. nov. isolated from surface soil in the permafrost region of the Qilian Mountains, China. Curr Microbiol 2016; 72:363–369 [View Article]
    [Google Scholar]
  36. Athalye M, Noble WC, Minnikin DE. Analysis of cellular fatty acids by gas chromatography as a tool in the identification of medically important coryneform bacteria. J Appl Microbiol 1985; 58:507–512 [View Article]
    [Google Scholar]
  37. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  38. Costa MSD, Albuquerque L, Nobre MF, Wait R. The extraction and identification of respiratory lipoquinones of prokaryotes and their use in taxonomy. Methods Microbiol 2011; 38:197–206 [View Article]
    [Google Scholar]
  39. Costa MSD, Albuquerque L, Nobre MF, Wait R. The identification of polar lipids in prokaryotes-sciencedirect. Methods Microbiol 2011; 38:165–181 [View Article]
    [Google Scholar]
  40. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  41. Tang SK, Wang Y, Chen Y, Lou K, Cao LL. And emended description of the genus zhihengliuella. Int J Syst Evol Microbiol 200959 [View Article]
    [Google Scholar]
  42. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  43. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  44. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006752
Loading
/content/journal/ijsem/10.1099/ijsem.0.006752
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error