Skip to content
1887

Abstract

A culture-dependent bioprospecting strategy, based on the use of several selective isolation media, revealed the presence of relatively high numbers of streptomycete-like colonies from machair grassland soil, in which carbonate minerals dominate. Representatives were shown to be bioactive in primary and secondary antimicrobial screens conducted through standard plug assays. The comparison of the whole-genome sequences showed that four of the isolates were novel species in the genus , for which the names sp. nov. (=DSM 118365; =NCIMB 15554), sp. nov. (=DSM 118363; =NCIMB 15553), sp. nov. (=DSM 118364; =NCIMB 15555) and sp. nov. (=NCIMB 15556; =DSM 118366) are proposed. Genomes of the novel strains were found to be rich in biosynthetic gene clusters predicted to encode for diverse, specialized metabolites, notably antibiotics. They also contained stress-related genes that provided an insight into how streptomycetes cope with the prevailing conditions in machair grassland soils. It can be concluded that selective isolation and dereplication of streptomycetes from the unique machair habitat provides a practical way of isolating novel strains for ecological and biotechnological studies.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006736
2025-04-10
2025-04-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/75/4/ijsem006736.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006736&mimeType=html&fmt=ahah

References

  1. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020; 83:770–803 [View Article] [PubMed]
    [Google Scholar]
  2. Ebrahimi-Zarandi M, Riseh RS, Tarkka MT. Actinobacteria as effective biocontrol agents against plant pathogens, an overview on their role in eliciting plant defense. Microorganisms 2022; 10:1739 [View Article] [PubMed]
    [Google Scholar]
  3. Boukhatem ZF, Merabet C, Tsaki H. Plant growth promoting actinobacteria, the most promising candidates as bioinoculants?. Front Agron 2022; 849911: [View Article]
    [Google Scholar]
  4. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 2021; 71:005056 [View Article]
    [Google Scholar]
  5. De Simeis D, Serra S. Actinomycetes: a never-ending source of bioactive compounds—an overview on antibiotics production. J Antibiot 2021; 10:483 [View Article] [PubMed]
    [Google Scholar]
  6. Baltz RH. Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 2017; 44:573–588 [View Article]
    [Google Scholar]
  7. Sivakala KK, Gutiérrez-García K, Jose PA, Thinesh T, Anandham R et al. Desert environments facilitate unique evolution of biosynthetic potential in Streptomyces. Molecules 2021; 26:3 [View Article] [PubMed]
    [Google Scholar]
  8. Lacey HJ, Rutledge PJ. Recently discovered secondary metabolites from Streptomyces Species. Molecules 2022; 27:887 [View Article] [PubMed]
    [Google Scholar]
  9. Donald L, Pipite A, Subramani R, Owen J, Keyzers RA et al. Streptomyces: still the biggest producer of new natural secondary metabolites, a current perspective. Microbiol Res 2022; 13:418–465 [View Article]
    [Google Scholar]
  10. Sayed AM, Hassan MHA, Alhadrami HA, Hassan HM, Goodfellow M et al. Extreme environments: microbiology leading to specialized metabolites. J Appl Microbiol 2020; 128:630–657 [View Article]
    [Google Scholar]
  11. He Z, Wang Y, Bai X, Chu M, Yi Y et al. Bacterial community composition and isolation of actinobacteria from the soil of flaming mountain in Xinjiang, China. Microorganisms 2023; 11:489 [View Article] [PubMed]
    [Google Scholar]
  12. Goodfellow M, Nouioui I, Sanderson R, Xie F, Bull AT. Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie Van Leeuwenhoek 2018; 111:1315–1332 [View Article] [PubMed]
    [Google Scholar]
  13. Adamek M, Alanjary M, Sales-Ortells H, Goodfellow M, Bull AT et al. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genome 2018; 19:426 [View Article] [PubMed]
    [Google Scholar]
  14. Nouioui I, Ghodhbane-Gtari F, Pötter G, Klenk HP, Goodfellow M. Novel species of Frankia, Frankia gtarii sp. nov. and Frankia tisai sp. nov., isolated from a root nodule of Alnus glutinosa. Syst Appl Microbiol 2023; 46:126377 [View Article] [PubMed]
    [Google Scholar]
  15. Goodfellow M, Fiedler HP. A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie Van Leeuwenhoek 2010; 98:119–142 [View Article] [PubMed]
    [Google Scholar]
  16. Świecimska M, Golińska P, Goodfellow M. Generation of a high quality library of bioactive filamentous actinomycetes from extreme biomes using a culture-based bioprospecting strategy. Front Microbiol 2023; 13:1054384 [View Article] [PubMed]
    [Google Scholar]
  17. Abdel-Mageed WM, Al-Wahaibi LH, Lehri B, Al-Saleem MSM, Goodfellow M et al. Biotechnological and ecological potential of Micromonospora provocatoris sp. nov., a gifted strain isolated from the challenger deep of the mariana trench. Mar Drugs 2021; 19:243 [View Article] [PubMed]
    [Google Scholar]
  18. Rennert T, Herrmann L. Sea spray and land use effects on clay minerals and organic matter of soils on machair (Harris, Scotland). Geoderma Reg 2020; 23:e00339 [View Article]
    [Google Scholar]
  19. Dargie T. Sand Dune Vegetation Survey of Scotland: Orkney. In SNH Research Survey and Monitoring Report vol 3 NVC Maps; 1998
    [Google Scholar]
  20. Karunadasa KSP, Manoratne C, Pitawala H, Rajapakse RMG. Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. J Phys Chem Solids 2019; 134:21–28 [View Article]
    [Google Scholar]
  21. Álvaro-Fuentes J, Lóczy D, Thiele-Bruhn S, Zornoza R. Handbook of Plant and Soil Analysis for Agricultural Systems (1.0) Cartagena: Universidad Politécnica; 2019
    [Google Scholar]
  22. Manning DAC, Renforth P, Lopez-Capel E, Robertson S, Ghazireh N. Carbonate precipitation in artificial soils produced from basaltic quarry fines and composts: an opportunity for passive carbon sequestration. Int J Greenh Gas Control 2013; 17:309–317 [View Article]
    [Google Scholar]
  23. Evlat H, Toker SK, Koçyiğit A. Screening for agroactive and bioactive metabolites production by actinobacteria isolated from rhizospheric soils. Biologia 2023; 78:187–200 [View Article]
    [Google Scholar]
  24. Nonomura H, Ohara Y. Distribution of actinomycetes in soil (VI). a culture method effective for both preferential isolation and enumeration of Microbispora and Streptosporangium strains in soil. J Ferment Technol 1969; 47:463–469
    [Google Scholar]
  25. Zakharova OS, Zenova GM, Zvyagintsev DG. Selective isolation of actinomycetes of the genus Actinomadura from soil. Microbiol 2003; 72:110–113 [View Article] [PubMed]
    [Google Scholar]
  26. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment technol 1987; 65:501–509 [View Article]
    [Google Scholar]
  27. vickers J, Williams S, Ross GW. A taxonomic approach to selective isolation of streptomycetes from soil. In OrtizOrtiz L, Bojalil LF, Yakoleff V. eds Biological, Biochemical and Biomedical Aspects of Actinomycetes Orlando: Academic press; 1984 pp 553–561 [View Article]
    [Google Scholar]
  28. Küster E, Williams ST. Selection of media for isolation of streptomycetes. Nature 1964; 202:928–929 [View Article]
    [Google Scholar]
  29. Hayakawa M, Momose Y, Yamazaki T, Nonomura H. A method for the selective isolation of Microtetraspora glauca and related four‐spored actinomycetes from soil. J Appl Microbiol 1996; 80:375–386 [View Article]
    [Google Scholar]
  30. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Evol microbiol 1966; 16:313–340 [View Article]
    [Google Scholar]
  31. Kelly K. Central notations for the revised ISCC-NBS color-name blocks. J Res N 1964; 202:928–929
    [Google Scholar]
  32. Smith AC, Hussey MA. Gram stain protocols. ASM 20051–9
    [Google Scholar]
  33. Fiedler HP. Screening for biodiversity. In Bull AT. eds Microbial Diversity and Bioprospecting Washington, DC: American Society of Microbiology; 2004 pp 324–335 [View Article]
    [Google Scholar]
  34. Kusuma AB, Nouioui I, Goodfellow M. Genome-based classification of the Streptomyces violaceusniger clade and description of Streptomyces sabulosicollis sp. nov. from an Indonesian sand dune. Antonie Van Leeuwenhoek 2021; 114:859–873 [View Article] [PubMed]
    [Google Scholar]
  35. Burn SF. Detection of β-galactosidase activity: X-gal staining. Methods Mol Biol 2012; 886:241–250
    [Google Scholar]
  36. Hutter B, Fischer C, Jacobi A, Schaab C, Loferer H. Panel of Bacillus subtilis reporter strains indicative of various modes of action. Antimicrob Agents Chemother 2004; 48:2588–2594 [View Article] [PubMed]
    [Google Scholar]
  37. Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol 2019; 20:129 [View Article] [PubMed]
    [Google Scholar]
  38. Wick RR, Holt KE. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Res 2019; 8:2138 [View Article] [PubMed]
    [Google Scholar]
  39. Seemann T. Barrnap-Bacterial ribosomal RNA predictor [Internet]; 2014 https://github.com/tseemann/barrnap accessed 9 August 2023
  40. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  41. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  42. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  43. Mavromatis K, Ivanova NN, Chen IA, Szeto E, Markowitz VM et al. The DOE-JGI standard operating procedure for the annotations of microbial genomes. Stand Genomic Sci 2009; 1:63–67 [View Article] [PubMed]
    [Google Scholar]
  44. Richter M, Rosselló-Móra R, Glöckner FO, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016 [View Article] [PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  46. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  47. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  48. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol 1987; 37:463–464 [View Article]
    [Google Scholar]
  49. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. IJSEM 2024; 74:006300 [View Article] [PubMed]
    [Google Scholar]
  50. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  51. Farris JS. Estimating phylogenetic trees from distance matrices. AM Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  52. Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 2017; 33:2946–2947 [View Article] [PubMed]
    [Google Scholar]
  53. Tamura K, Stecher G, Kumar S. MEGA 11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  54. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  55. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1993; 10:512–526
    [Google Scholar]
  56. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011; 39:W339–46 [View Article] [PubMed]
    [Google Scholar]
  57. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
  58. Williams ST, Davies FL, Hall DM. A practical approach to the taxonomy of actinomycetes isolated from soil. In Sheals JG. eds The Soil Ecosystem vol 8 London: The Systematics Association; 1969 pp 107–117
    [Google Scholar]
  59. Antony-Babu S, Stach JEM, Goodfellow M. Genetic and phenotypic evidence for Streptomyces griseus ecovars isolated from a beach and dune sand system. Antonie Van Leeuwenhoek 2008; 94:63–74 [View Article] [PubMed]
    [Google Scholar]
  60. Gunjal A, Bhagat DS. Diversity of actinomycetes in Western Ghats. In Microbial Diversity in Hot Spots Academic Press; 2022 pp 117–133 [View Article]
    [Google Scholar]
  61. Zhou Z, Gu J, Li Y-Q, Wang Y. Genome plasticity and systems evolution in Streptomyces. BMC Bioinform 2012; 13:S8 [View Article] [PubMed]
    [Google Scholar]
  62. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  63. Waksman SA, Henrici AT. Family III. Streptomycetaceae Waksman & Henrici. In Breed RS, Murray EGD, Hitchens AP. eds Bergey’s Manual of Determine Bacteriology, 6th Edn Baltimore: 1948 pp 929–980
    [Google Scholar]
  64. Bunting EH. Actinomyces in cacao-beans. In Bunting RH. eds Annals of Applied Biology vol 19 1932 pp 515–517 [View Article]
    [Google Scholar]
  65. Janaki T. Anticancer activity of Streptomyces cacaoi subspcacaoi.M20 against breast cancer (MCF-7). Cell Lines 2019; 12:108–116 [View Article]
    [Google Scholar]
  66. Atta HM, Yassen AM. Antimicrobial activities of a streptomyces microflavus isolated from KSA: taxonomy, fermentation, extraction and biological activities. Int J Life Sci 2015; 4:260–269
    [Google Scholar]
  67. Krainsky A. Die Aktinomyceten und ihren Bedutung in der Natur. In Zentrabl Bakteriol Parasitenkd Infektionskr Hyg Abt II vol 41 1914 pp 649–688
    [Google Scholar]
  68. Kumar Y, Goodfellow M. Reclassification of Streptomyces hygroscopicus strains as Streptomyces aldersoniae sp. nov., Streptomyces angustmyceticus sp. nov., comb. nov., Streptomyces ascomycinicus sp. nov., Streptomyces decoyicus sp. nov., comb. nov., Streptomyces milbemycinicus sp. nov. and Streptomyces wellingtoniae sp. nov. IJSEM 2010; 60:769–775 [View Article] [PubMed]
    [Google Scholar]
  69. Ward AC, Allenby NEE. Genome mining for the search and discovery of bioactive compounds: the Streptomyces paradigm. FEMS Microbiol Lett 2018; 365:fny240 [View Article] [PubMed]
    [Google Scholar]
  70. Świecimska M, Golińska P, Goodfellow M. Genome-based classification of Streptomyces pinistramenti sp. nov., a novel actinomycete isolated from a pine forest soil in Poland with a focus on its biotechnological and ecological properties. Antonie Van Leeuwenhoek 2022; 115:783–800 [View Article] [PubMed]
    [Google Scholar]
  71. Świecimska M, Golińska P, Nouioui I, Wypij M, Rai M et al. Streptomyces alkaliterrae sp. nov., isolated from an alkaline soil, and emended descriptions of Streptomyces alkaliphilus, Streptomyces calidiresistens and Streptomyces durbertensis. Syst Appl Microbiol 2020; 43:126153 [View Article] [PubMed]
    [Google Scholar]
  72. Liu W, Sun F, Hu Y. Genome mining-mediated discovery of a new avermipeptin analogue in Streptomyces actuosus ATCC 25421. ChemistryOpen 2018; 7:558–561 [View Article] [PubMed]
    [Google Scholar]
  73. Asai A, Hasegawa A, Ochiai K, Yamashita Y, Mizukami T. Belactosin A, a novel antitumor antibiotic acting on cyclin/CDK mediated cell cycle regulation, produced by Streptomyces sp. J Antibiot 2000; 53:81–83 [View Article]
    [Google Scholar]
  74. Kong F, Carter GT. Structure determination of glycinocins A to D, further evidence for the cyclic structure of the amphomycin antibiotics. J Antibiot 2003; 56:557–564 [View Article]
    [Google Scholar]
  75. Corcilius L, Liu DY, Ochoa JL, Linington RG, Payne RJ. Synthesis and evaluation of analogues of the glycinocin family of calcium-dependent antibiotics. Org Biomol Chem 2018; 16:5310–5320 [View Article] [PubMed]
    [Google Scholar]
  76. Yang J, Sun GJ, Li YQ, Cui KY, Mo HZ. Antibacterial characteristics of glycinin basic polypeptide against Staphylococcus aureus. Food Sci Biotechnol 2016; 25:1477–1483 [View Article] [PubMed]
    [Google Scholar]
  77. Xu D, Nepal KK, Chen J, Harmody D, Zhu H et al. Nocardiopsistins A-C: new angucyclines with anti-MRSA activity isolated from a marine sponge-derived Nocardiopsis sp. HB-J378. Synth Syst Biotechnol 2018; 3:246–251 [View Article] [PubMed]
    [Google Scholar]
  78. Hayakawa Y, Iwakiri T, Imamura K, Setp H, Otake N. Studies on the isotetracenone antibiotics. III. a new isotetracenone antibiotic, grincamycin. J Antibiot 1987; 40:1785–1787 [View Article]
    [Google Scholar]
  79. Hasebe F, Matsuda K, Shiraishi T, Futamura Y, Nakano T et al. Amino-group carrier-protein-mediated secondary metabolite biosynthesis in Streptomyces. Nat Chem Biol 2016; 12:967–972 [View Article] [PubMed]
    [Google Scholar]
  80. Park SR, Tripathi A, Wu J, Schultz PJ, Yim I et al. Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway. Nat Commun 2016; 7:10710 [View Article]
    [Google Scholar]
  81. Singh A, Amod A, Pandey P, Bose P, Pingali MS et al. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomed Mater 2022; 17:022003 [View Article] [PubMed]
    [Google Scholar]
  82. Tsuchida T, Iinuma H, Kinoshita N, Ikeda T, Sawa T et al. Azicemicins A and B, A New antimicrobial agent produced by amycolatopsis. I. taxonomy, fermentation, isolation, characterization and biological activities. J Antibiot 1995; 48:217–221 [View Article]
    [Google Scholar]
  83. de La Hoz-Romo MC, Díaz L, Villamil L. Marine actinobacteria a new source of antibacterial metabolites to treat acne vulgaris disease—a systematic literature review. Antibiotics 2022; 11:965 [View Article] [PubMed]
    [Google Scholar]
  84. Nagata N, Marriott D, Harkness J, Ellis JT, Stark D. Current treatment options for Dientamoeba fragilis infections. Int J Parasitol Drug 2012; 2:204–215 [View Article] [PubMed]
    [Google Scholar]
  85. Haeder JR, Yoshimura A, Wakimoto T. New variochelins from soil-isolated Variovorax sp. H002. Beilstein J Org Chem 2024; 20:692–700 [View Article]
    [Google Scholar]
  86. Lim YH, Wong FT, Yeo WL, Ching KC, Lim YW et al. Auroramycin: a potent antibiotic from Streptomyces roseosporus by CRISPR-Cas9 activation. ChemBiochem 2018; 19:1716–1719 [View Article] [PubMed]
    [Google Scholar]
  87. Wu T, Liu W, Chen H, Hou L, Ren W et al. Toxoflavin analog D43 exerts antiproliferative effects on breast cancer by inducing ROS-mediated apoptosis and DNA damage. Sci Rep 2024; 14: [View Article]
    [Google Scholar]
  88. Choi O, Lee Y, Park J, Kang B, Chun HJ et al. A novel toxoflavin-quenching regulation in bacteria and its application to resistance cultivars. Microb Biotechnol 2021; 14:1657–1670 [View Article] [PubMed]
    [Google Scholar]
  89. Jędrzejczyk M, Stępcyńska N, Klejborowska G, Podsiad M, Stefańska J et al. Synthesis and evaluation of antibacterial and trypanocidal activity of derivatives of monensin A. BMCL 2022; 58:128521
    [Google Scholar]
  90. Heib A, Niro G, Weck SC, Koppermann S, Ducho C. Muraymycin nucleoside antibiotics: structure-activity relationship for variations in the nucleoside unit. Molecules 2019; 25:22 [View Article] [PubMed]
    [Google Scholar]
  91. Sermkaew N, Atipairin A, Krobthong S, Aonbangkhen C, Yingchutrakul Y et al. Unveiling a new ntimicrobial peptide with efficacy against P. aeruginosa and K. pneumoniae from Mangrove-derived Paenibacillus thiaminolyticus NNS5-6 and genomic analysis. Antibiotics 2024; 13:846 [View Article] [PubMed]
    [Google Scholar]
  92. D’Angelo KA, Schissel CK, Pentelute BL, Movassaghi M. Total synthesis of himastatin. Org Chem 2022; 375:894–899 [View Article] [PubMed]
    [Google Scholar]
  93. Cai L, Seiple IB, Li Q. Modular chemical synthesis of streptogramin and lankacidin antibiotics. Acc Chem Res 2021; 54:1891–1908 [View Article] [PubMed]
    [Google Scholar]
  94. Shin Y-H, Beom JY, Chung B, Shin Y, Byun WS et al. Bombyxamycins A and B, cytotoxic macrocyclic lactams from an intestinal bacterium of the silkworm Bombyx mori. Org Lett 2019; 21:1804–1808 [View Article]
    [Google Scholar]
  95. Liu Y, Xun W, Chen L, Xu Z, Zhang N et al. Rhizosphere microbes enhance plant salt tolerance: toward crop production in saline soil. Comput Struct Biotechnol J 2022; 20:6543–6551 [View Article] [PubMed]
    [Google Scholar]
  96. Vu MT, Geraldi A, Do HDK, Luqman A, Nguyen HD et al. Soil mineral composition and salinity are the main factors regulating the bacterial community associated with the roots of coastal sand dune halophytes. Biology 2022; 11:695 [View Article] [PubMed]
    [Google Scholar]
  97. Wen Y, Zhang G, Bahadur A, Xu Y, Liu Y et al. Genomic investigation of desert Streptomyces huasconensis D23 reveals its environmental adaptability and antimicrobial activity. Microorganisms 2022; 10:2408 [View Article] [PubMed]
    [Google Scholar]
  98. Embley M, Sangal V, Sutcliffe IC, Trujillo ME. In memoriam – michael goodfellow (1941 – 2024). IJSEM 2024; 74:006342 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006736
Loading
/content/journal/ijsem/10.1099/ijsem.0.006736
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error