Skip to content
1887

Abstract

A Gram-stain-positive, aerobic and non-motile actinobacterium, designated strain MR15.9, was isolated from sediment collected from a mangrove ecosystem in Semarang city, Indonesia. Strain MR15.9 grew at 4–37 °C (optimum 30 °C), pH 6.0–11.0 (optimum 7.0–8.0), with 0–10% (w/v) NaCl (optimum 0–3%). The genome of strain MR15.9 was 3.67 Mbp with 71.7 mol% G+C content. Phylogenetic analysis based on 16S rRNA gene sequence and genome sequence directed that strain MR15.9 formed a well-supported clade with CGMCC 1.15480 and 1P05MA and shared the highest similarity to CGMCC 1.15480 (98.9% sequence similarity) and 1P05MA (98.6% sequence similarity). However, the comparative genome analysis between strain MR15.9 and CGMCC 1.15480 gave average identity value of 85.2% and digital DNA–DNA hybridization value of 29.0%, which were below the statistical threshold for the delineation of the species. Chemotaxonomic data showed that the major fatty acids were anteiso-C, anteiso-C and iso-C. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unidentified glycolipids and two unidentified phospholipids. MK-8(H) and MK-9(H) were noted as the predominant respiratory quinones in this strain. The results of polyphasic characterization indicated that strain MR15.9 represents a novel species of the genus . The name sp. nov. is proposed, with the type strain MR15.9 (=MCCC 1K08875=KCTC 59105).

Funding
This study was supported by the:
  • Kunlun Talented People, High-end Innovation and Entrepreneurship Talents Plan of Qinghai Province
    • Principal Award Recipient: SunCheng-Hang
  • CAMS Innovation Fund for Medical Sciences (Award CIFMS 2021-I2M-1-028)
    • Principal Award Recipient: SunCheng-Hang
  • Foreign Youth Talent Program of the Ministry of Science and Technology of the People’s Republic of China (Award QN2022194001L)
    • Principal Award Recipient: SunCheng-Hang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006669
2025-02-03
2025-11-11

Metrics

Loading full text...

Full text loading...

References

  1. Vaishampayan P, Moissl-Eichinger C, Pukall R, Schumann P, Spröer C et al. Description of Tersicoccus phoenicis gen. nov., sp. nov. isolated from spacecraft assembly clean room environments. Int J Syst Evol Microbiol 2013; 63:2463–2471 [View Article]
    [Google Scholar]
  2. Sultanpuram VR, Mothe T, Chintalapati S, Chintalapati VR. Tersicoccus solisilvae sp., nov., a bacterium isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:5061–5065 [View Article] [PubMed]
    [Google Scholar]
  3. Li F, Liu S, Lu Q, Zheng H, Osterman IA et al. Studies on antibacterial activity and diversity of cultivable actinobacteria isolated from mangrove soil in Futian and Maoweihai of China. Evid Based Complement Alternat Med 2019; 2019:1–11 [View Article]
    [Google Scholar]
  4. Li F, Hao X, Lu Q, Tuo L, Liu S et al. Protaetiibacter mangrovi sp. nov., isolated from mangrove soil. J Antibiot 2023; 76:532–539 [View Article]
    [Google Scholar]
  5. Liu SW, Xue CM, Li FN, Sun CH. Nocardioides vastitatis sp. nov., isolated from Taklamakan desert soil. Int J Syst Evol Microbiol 2020; 70:77–82 [View Article]
    [Google Scholar]
  6. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  7. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biol Evol 1987; 4:406–425
    [Google Scholar]
  8. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  9. Kannan L, Wheeler WC. Maximum parsimony on phylogenetic networks. Algorithms Mol Biol 2012; 7:9 [View Article] [PubMed]
    [Google Scholar]
  10. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  11. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  12. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  13. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  14. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  15. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genom 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  16. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  17. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  18. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res 2020; 48:D606–D612 [View Article] [PubMed]
    [Google Scholar]
  19. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
  20. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C et al. BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 2004; 32:D431–3 [View Article] [PubMed]
    [Google Scholar]
  21. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. Gene ontology: tool for the unification of biology. Nat Genet 2000; 25:25–29 [View Article]
    [Google Scholar]
  22. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–D462 [View Article]
    [Google Scholar]
  23. Wargo MJ, Szwergold BS, Hogan DA. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism. J Bacteriol 2008; 190:2690–2699 [View Article] [PubMed]
    [Google Scholar]
  24. Mori N, Sano M, Tani Y, Yamada H. Purification and properties of sarcosine oxidase from Cylindrocarpon didymum M–1. Agric Biol Chem 1980; 44:1391–1397 [View Article]
    [Google Scholar]
  25. Kappes RM, Kempf B, Bremer E. Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J Bacteriol 1996; 178:5071–5079 [View Article] [PubMed]
    [Google Scholar]
  26. Heller KB, Lin EC, Wilson TH. Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J Bacteriol 1980; 144:274–278 [View Article] [PubMed]
    [Google Scholar]
  27. Borgnia MJ, Agre P. Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc Natl Acad Sci U S A 2001; 98:2888–2893 [View Article] [PubMed]
    [Google Scholar]
  28. Nepal S, Kumar P. Growth, cell division, and gene expression of Escherichia coli at elevated concentrations of magnesium sulfate: implications for habitability of Europa and Mars. Microorganisms 2020; 8:637 [View Article] [PubMed]
    [Google Scholar]
  29. Giani M, Martínez-Espinosa RM. Carotenoids as a protection mechanism against oxidative stress in Haloferax mediterranei. Antioxidants 2020; 9:1060 [View Article] [PubMed]
    [Google Scholar]
  30. Yang Q. Crucial roles of carotenoids as bacterial endogenous defense system for bacterial radioresistance of Deinococcus radiodurans. Microbiology 2021 [View Article]
    [Google Scholar]
  31. Jagannadham MV, Chattopadhyay MK, Subbalakshmi C, Vairamani M, Narayanan K et al. Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch Microbiol 2000; 173:418–424 [View Article] [PubMed]
    [Google Scholar]
  32. Seel W, Baust D, Sons D, Albers M, Etzbach L et al. Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus. Sci Rep 2020; 10:330 [View Article] [PubMed]
    [Google Scholar]
  33. Wang J, Li W, Wang H, Lu C. Pentaketide ansamycin microansamycins A–I from Micromonospora sp. reveal diverse post-PKS modifications. Org Lett 2018; 20:1058–1061 [View Article]
    [Google Scholar]
  34. Yoon S-H, Ha S, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  35. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  38. Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 2020; 6:3–6 [View Article]
    [Google Scholar]
  39. Delmont TO, Eren AM. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 2018; 6:e4320 [View Article] [PubMed]
    [Google Scholar]
  40. Sun J, Lu F, Luo Y, Bie L, Xu L et al. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res 2023; 51:W397–W403 [View Article] [PubMed]
    [Google Scholar]
  41. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  43. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  44. Matsubara H, Saeki K. 1992; Structural and functional diversity of ferredoxins and related proteins. Adv Inorg Chem223–280
    [Google Scholar]
  45. Meyer J. Ferredoxins of the third kind. FEBS Lett 2001; 509:1–5 [View Article] [PubMed]
    [Google Scholar]
  46. Ferguson GP, Tötemeyer S, MacLean MJ, Booth IR. Methylglyoxal production in bacteria: suicide or survival?. Arc Microbiol 1998; 170:209–218 [View Article]
    [Google Scholar]
  47. Suttisansanee U, Honek JF. Bacterial glyoxalase enzymes. Sem Cell & Developmental Biol 2011; 22:285–292 [View Article]
    [Google Scholar]
  48. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 1975; 130:341–346 [View Article] [PubMed]
    [Google Scholar]
  49. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  50. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 vol 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  51. Tuo L, Yan X-R, Liu Y. Aeromicrobium endophyticum sp. nov., a novel endophytic actinobacterium isolated from bark of Melia azedaeach L. Int J Syst Evol Microbiol 2020; 70:693–699 [View Article]
    [Google Scholar]
  52. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  53. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  54. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006669
Loading
/content/journal/ijsem/10.1099/ijsem.0.006669
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error