Skip to content
1887

Abstract

A new alkaliphilic strain of a purple sulphur bacterium designated as Um2 (=KCTC 25734=VKM B-3893=UQM 41073) with bacteriochlorophyll and internal photosynthetic membranes of tubular type was isolated from the Umhei hydrothermal system (40 °C, pH 9.3 and salinity 0.42 g l) located in the Baikal rift zone (Russia). Based on morphological and physiological characteristics, this bacterium was classified as . The 16S rRNA gene sequence similarity of strain Um2 was 96.69% with the type strain of A26, 95.41% with ‘’ 8321 and 95.34% with 4250. The level of similarity of the ribulose 1,5-bisphosphate carboxylase sequences of strain Um2 and known strains of showed that they belong to the same species. Comparison of the genome nt sequences of strain Um2 revealed that the new isolate was remote from all other described species both in digital DNA–DNA hybridization (21.5%) and in average nt identity (76.7%) at the genus level. However, a genome nt sequence had not been determined for any of the known strains; therefore, the first genome sequence of a member of the genus is presented here. Um2 is proposed as the neotype, as strain A26 has been lost from culture collections.

Funding
This study was supported by the:
  • Wilson Enhancement Fund for Applied Research in Science at Bellevue University.
    • Principal Award Recipient: A. BryantsevaIrina
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006657
2025-01-31
2025-11-08

Metrics

Loading full text...

Full text loading...

References

  1. Imhoff JF, Kyndt JA, Meyer TE. Genomic comparison, phylogeny and taxonomic reevaluation of the Ectothiorhodospiraceae and description of Halorhodospiraceae fam. nov. and Halochlorospira gen. nov. Microorganisms 2022; 10:295 [View Article]
    [Google Scholar]
  2. Imhoff JF. The Family Chromatiaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes Berlin/Heidelberg, Germany: Springer; 2014 pp 151–178 https://doi.org/10.1007/978-3-642-38922-1_295
    [Google Scholar]
  3. Imhoff JF. Family I. Chromatiaceae. In Brenner DJ, Krieg NR, Staley JT. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol 2, part B New York, NY, USA: Springer; 2005 pp 3–9
    [Google Scholar]
  4. Eimhjellen KE, Steensland H, Traetteberg J. A Thiococcus sp. nov. gen., its pigments and internal membrane system. Arch Mikrobiol 1967; 59:82–92 [View Article] [PubMed]
    [Google Scholar]
  5. Eimhjellen KE. Thiocapsa pfennigii sp. nov. a new species of the phototrophic sulfur bacteria. Archiv Mikrobiol 1970; 73:193–194 [View Article]
    [Google Scholar]
  6. Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol 1980; 30:225–420 [View Article]
    [Google Scholar]
  7. Imhoff JF, Süling J, Petri R. Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatium, Thiococcus, Thiohalocapsa and Thermochromatium. Int J Syst Bacteriol 1998; 48 Pt 4:1129–1143 [View Article] [PubMed]
    [Google Scholar]
  8. Imhoff JF, Pfennig N. Thioflavicoccus mobilis gen. nov., sp. nov., a novel purple sulfur bacterium with bacteriochlorophyll b. Int J Syst Evol Microbiol 2001; 51:105–110 [View Article] [PubMed]
    [Google Scholar]
  9. Imhoff JF. Genus XIV. Thiococcus. In Brenner DJ, Krieg NR, Staley JT. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn vol 2, part B New York, NY, USA: Springer; 2005 pp 28–29
    [Google Scholar]
  10. Imhoff JF. Thiococcus. In Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P et al. eds Bergey’s Manual of Systematics of Archaea and Bacteria 2015 https://doi.org/10.1002/9781118960608.gbm01117
    [Google Scholar]
  11. Bryantseva IA, Gorlenko VM, Kompantseva EI, Imhoff JF. Thioalkalicoccus limnaeus gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium with bacteriochlorophyll b. Int J Syst Evol Microbiol 2000; 50:2157–2163 [View Article]
    [Google Scholar]
  12. Gorlenko VM, Buryukhaev SP, Matyugina EB, Borzenko SV, Namsaraev ZB et al. Microbial communities of the stratified soda Lake Doroninskoe (Transbaikal region). Microbiology 2010; 79:390–401 [View Article]
    [Google Scholar]
  13. Imhoff JF. Genus XII. Thioalkalicoccus. In Brenner DJ, Krieg NR, Staley JT. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol 2, part B New York, NY, USA: Springer; 2005 pp 25–26
    [Google Scholar]
  14. Imhoff JF. Thioalkalicoccus. In Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P et al. eds Bergey’s Manual of Systematics of Archaea and Bacteria 2015 [View Article]
    [Google Scholar]
  15. Imhoff JF. Genus XVII. Thioflavicoccus. In Brenner DJ, Krieg NR, Staley JT. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn vol 2, part B New York, NY, USA: Springer; 2005 pp 33–34
    [Google Scholar]
  16. Imhoff JF, Rahn T, Künzel S, Keller A, Neulinger SC. Osmotic adaptation and compatible solute biosynthesis of phototrophic bacteria as revealed from genome analyses. Microorganisms 2021; 9:46 [View Article]
    [Google Scholar]
  17. Pfennig N, Lippert KD. Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Archiv Mikrobiol 1966; 55:245–256 [View Article]
    [Google Scholar]
  18. Ryter A, Kellenberger E, Birch-Andersen A, Maaløe O. Etude au microscope électronique des plasmes contenant de l’acide déoxyribonucléique 1 les nucléoides des bactéries en croissance active. Z Naturforsch 1958; 13:597–605
    [Google Scholar]
  19. REYNOLDS ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 1963; 17:208–212 [View Article] [PubMed]
    [Google Scholar]
  20. Reznikov AA, Mulikovskaya EP, IYu S. Methods for natural water analysis. Nedra: Moscow; 1970
  21. Kolthoff IM, Sandell EB, Meehan EJ, Bruckenstein S. Quantitative Chemical Analysis New York: Macmillan; 1969
    [Google Scholar]
  22. DODGSON KS. Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochem J 1961; 78:312–319 [View Article] [PubMed]
    [Google Scholar]
  23. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001 [View Article]
    [Google Scholar]
  24. Joshi NA, Fass JN. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) [Software] 2011 https://github.com/najoshi/sickle
  25. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  26. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  27. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  30. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article]
    [Google Scholar]
  31. Stamatakis A, Hoover P, Rougemont JA. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 2008; 57:758–771 [View Article] [PubMed]
    [Google Scholar]
  32. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  33. Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  34. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  35. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  36. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  37. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008; 25:1307–1320 [View Article] [PubMed]
    [Google Scholar]
  38. Aasen AJ, Carotenoids. JSLiaaenB XXI. Bacterial carotenoids. XXI.Isolation and synthesis of 3,4,3’,4’-tetrahydrospirilloxanthin. Acta Chem Scand 1967; 21:371–177 [View Article]
    [Google Scholar]
  39. Parrello B, Butler R, Chlenski P, Olson R, Overbeek J et al. A machine learning-based service for estimating quality of genomes using PATRIC. BMC Bioinformatics 2019; 20:486 [View Article] [PubMed]
    [Google Scholar]
  40. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300 [View Article] [PubMed]
    [Google Scholar]
  41. Tourova TP, Kovaleva OL, Bumazhkin BK, Patutina EO, Kuznetsov BB et al. Application of ribulose-1,5-bisphosphate carboxylase/oxygenase genes as molecular markers for assessment of the diversity of autotrophic microbial communities inhabiting the upper sediment horizons of the saline and soda lakes of the Kulunda Steppe. Microbiology 2011; 80:812–825 [View Article]
    [Google Scholar]
  42. Lemoine F, Lespinet O, Labedan B. Assessing the evolutionary rate of positional orthologous genes in prokaryotes using synteny data. BMC Evol Biol 2007; 7:237 [View Article] [PubMed]
    [Google Scholar]
  43. Alexeev N, Alekseyev MA. Estimation of the true evolutionary distance under the fragile breakage model. BMC Genomics 2017; 18:356 [View Article] [PubMed]
    [Google Scholar]
  44. Adato O, Ninyo N, Gophna U, Snir S. Detecting horizontal gene transfer between closely related taxa. PLoS Comput Biol 2015; 11:e1004408 [View Article] [PubMed]
    [Google Scholar]
  45. Van Rossum T, Ferretti P, Maistrenko OM, Bork P. Diversity within species: interpreting strains in microbiomes. Nat Rev Microbiol 2020; 18:491–506 [View Article] [PubMed]
    [Google Scholar]
  46. Enav H, Paz I, Ley RE. Strain tracking in complex microbiomes using synteny analysis reveals per-species modes of evolution. Nat Biotechnol 2024 [View Article] [PubMed]
    [Google Scholar]
  47. Oren A, Arahal DR, Göker M, Moore ERB, Rossello-Mora R et al. International code of nomenclature of prokaryotes. Prokaryotic code (2022 revision). Int J Syst Evol Microbiol 2023; 73:5585 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006657
Loading
/content/journal/ijsem/10.1099/ijsem.0.006657
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error