Skip to content
1887

Abstract

Six Gram-stain-positive and rod-shaped strains, designated FJAT-51614, FJAT-51639, FJAT-52054, FJAT-52991, FJAT-53654 and FJAT-53711, were isolated from a mangrove ecosystem. The condition for growth among the strains varied (pH ranging 5.0–11.0 and temperature 15–45 °C). These strains showed the highest 16S rRNA gene sequence similarity to the genera , and . Menaquinone MK-7 (100%) was present in all strains except strain FJAT-51614, which contained MK-7 (32%) and MK-8 (68%). The major fatty acids (>10%) in strains FJAT-52054 and FJAT-51614 were anteiso-C and iso-C. The major fatty acid (>10%) in strain FJAT-53654 was anteiso-C, while in strain FJAT-51639 were iso-C and iso-C. The major fatty acids in strains FJAT-52991 and FJAT-53711 were iso-C and iso-C. The major polar lipids in strains FJAT-51639, FJAT-52991 and FJAT-51614 were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine, while strains FJAT-53711, FJAT-52054 and FJAT-53654 consist of diphosphatidylglycerol and phosphatidylglycerol. The genome-relatedness values among the present study strains and the closest species were below the recognized cutoff levels for species delineation. The polyphasic analysis comparison results represent six strains as novel species for which the names sp. nov. (FJAT-51639=GDMCC 1.3073=JCM 35615), sp. nov. (FJAT-52991=GDMCC 1.3069=JCM 35619), sp. nov. (FJAT-53711=GDMCC 1.3068=JCM 35616), sp. nov. (FJAT-53654=GDMCC 1.3075=JCM 35614), sp. nov. (FJAT-52054=GDMCC 1.3074=JCM 35620) and sp. nov. (FJAT-51614=GDMCC 1.3072=JCM35478) are proposed.

Funding
This study was supported by the:
  • Deanship of Scientific Research at Northern Border University, Arar, Kingdom of Saudi Arabia (Award NBU-FFR-2025-2046-01)
    • Principal Award Recipient: Raziuddin QuadriSyed
  • Fujian Academy of Agricultural Sciences (Award GJYS202203)
    • Principal Award Recipient: Guo-HongLiu
  • National Natural Science Foundation of China (Award 42007221)
    • Principal Award Recipient: Guo-HongLiu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006656
2025-01-28
2025-11-07

Metrics

Loading full text...

Full text loading...

References

  1. Nimnoi P, Pongsilp N. Insights into bacterial communities and diversity of mangrove forest soils along the upper gulf of Thailand in response to environmental factors. Biology 2022; 11:1787 [View Article] [PubMed]
    [Google Scholar]
  2. Palit K, Rath S, Chatterjee S, Das S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: threats, vulnerability, and adaptations. Environ Sci Pollut Res Int 2022; 29:32467–32512 [View Article] [PubMed]
    [Google Scholar]
  3. Paingankar MS, Deobagkar DD. Pollution and environmental stressors modulate the microbiome in estuarine mangroves a metagenome analysis. Curr Sci 2018; 115:1525 [View Article]
    [Google Scholar]
  4. Srikanth S, Lum SKY, Chen Z. Mangrove root: adaptations and ecological importance. Trees 2016; 30:451–465 [View Article]
    [Google Scholar]
  5. Yu X, Yang X, Wu Y, Peng Y, Yang T et al. Sonneratia apetala introduction alters methane cycling microbial communities and increases methane emissions in mangrove ecosystems. Soil Biol Biochem 2020; 144:107775 [View Article]
    [Google Scholar]
  6. Zhuang W, Yu X, Hu R, Luo Z, Liu X et al. Diversity, function and assembly of mangrove root-associated microbial communities at a continuous fine-scale. NPJ Biofilms Microbiomes 2020; 6:52 [View Article] [PubMed]
    [Google Scholar]
  7. Thatoi H, Behera BC, Mishra RR, Dutta SK. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Ann Microbiol 2013; 63:1–19 [View Article]
    [Google Scholar]
  8. Alongi DM. Carbon cycling and storage in mangrove forests. Ann Rev Mar Sci 2014; 6:195–219 [View Article] [PubMed]
    [Google Scholar]
  9. Alzubaidy H, Essack M, Malas TB, Bokhari A, Motwalli O et al. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red sea. Gene 2016; 576:626–636 [View Article] [PubMed]
    [Google Scholar]
  10. Fadhilah QG, Santoso I, Yasman Y. The antagonistic activity of marine actinomycetes from mangrove ecosystem against phytopathogenic fungi Colletotrichum sp. KA. Biodiversitas 2021; 22:640–647 [View Article]
    [Google Scholar]
  11. Zhu P, Xu Y, Fu J, Liao Y. Streptomyces qinzhouensis sp. nov., a mangrove soil actinobacterium. Int J Syst Evol Microbiol 2020; 70:1800–1804 [View Article] [PubMed]
    [Google Scholar]
  12. Mo K, Huang H, Bao S, Hu Y. Bacillus caeni sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2020; 70:1503–1507 [View Article] [PubMed]
    [Google Scholar]
  13. Tang R, Yang S, Han S, Xie CJ, Huang GM et al. Bacillus litorisediminis sp. nov., a thermophilic bacterium isolated from mangrove sediment. Curr Microbiol 2023; 80:79 [View Article]
    [Google Scholar]
  14. Liu G-H, Yang S, Narsing Rao MP, Han S, Xie C-J et al. Isolation and genomics of ten novel Shewanella species from mangrove wetland. Int J Syst Evol Microbiol 2023; 73: [View Article]
    [Google Scholar]
  15. Cohn F. Untersuchungen über bakterien. Beitrage zur Biologie der Pflanzen 1872; 1:
    [Google Scholar]
  16. Krishnamurthi S, Ruckmani A, Pukall R, Chakrabarti T et al. Psychrobacillus gen. nov. and proposal for reclassification of Bacillus insolitus Larkin & Stokes, 1967, B. psychrotolerans Abd-El Rahman et al., 2002 and B. psychrodurans Abd-El Rahman et al., 2002 as Psychrobacillus insolitus comb. nov., Psychrobacillus psychrotolerans comb. nov. and Psychrobacillus psychrodurans comb. nov. Syst Appl Microbiol 1967; 33:367–373 [View Article]
    [Google Scholar]
  17. Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406–438 [View Article]
    [Google Scholar]
  18. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  19. Liu G-H, Liu D-Q, Wang P, Chen Q-Q, Che J-M et al. Temperature drives the assembly of Bacillus community in mangrove ecosystem. Sci Total Environ 2022; 846:157496 [View Article] [PubMed]
    [Google Scholar]
  20. Murray R. Determinative and cytological light microscopy. Methods for General and Molecular Bacteriology 1994
    [Google Scholar]
  21. Leifson E. Atlas of Bacterial Flagellation New York: Academic Press; 1960
    [Google Scholar]
  22. Narsing Rao MP, Dong Z-Y, Kan Y, Dong L, Li S et al. Description of Paenibacillus tepidiphilus sp. nov., isolated from a tepid spring. Int J Syst Evol Microbiol 2020; 70:1977–1981 [View Article] [PubMed]
    [Google Scholar]
  23. KOVACS N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article] [PubMed]
    [Google Scholar]
  24. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 1985; 82:6955–6959 [View Article] [PubMed]
    [Google Scholar]
  25. Bertolo A, Valido E, Stoyanov J. Optimized bacterial community characterization through full-length 16S rRNA gene sequencing utilizing MinION nanopore technology. BMC Microbiol 2024; 24:58 [View Article] [PubMed]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  28. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791
    [Google Scholar]
  33. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18
    [Google Scholar]
  34. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055
    [Google Scholar]
  35. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG et al. Anvi’o: an advanced analysis and visualization platform for omics data. PeerJ 2015; 3:e1319 [View Article] [PubMed]
    [Google Scholar]
  36. Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 2021; 6:3–6 [View Article] [PubMed]
    [Google Scholar]
  37. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [View Article] [PubMed]
    [Google Scholar]
  38. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  39. Lee MD. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 2019; 35:4162–4164 [View Article] [PubMed]
    [Google Scholar]
  40. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  41. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012; 40:D109–14 [View Article] [PubMed]
    [Google Scholar]
  42. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020; 36:2251–2252 [View Article] [PubMed]
    [Google Scholar]
  43. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article] [PubMed]
    [Google Scholar]
  44. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  45. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  46. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinf 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  47. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  48. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  49. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  50. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  51. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of cellulomonas Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95
    [Google Scholar]
  52. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  53. Sasser M. MIDI technical note 101. In Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Newark, DE: 1990 pp 1–7
    [Google Scholar]
  54. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  55. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  56. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131
    [Google Scholar]
  57. Bertels L-K, Fernández Murillo L, Heinisch JJ. The pentose phosphate pathway in yeasts–more than a poor cousin of glycolysis. Biomolecules 2021; 11:725
    [Google Scholar]
  58. Parham NJ, Gibson GR. Microbes involved in dissimilatory nitrate reduction in the human large intestine. FEMS Microbiol Ecol 2000; 31:21–28
    [Google Scholar]
  59. Tong T, Li R, Wu S, Xie S. The distribution of sediment bacterial community in mangroves across china was governed by geographic location and eutrophication. Mar Pollut Bull 2019; 140:198–203
    [Google Scholar]
  60. Alloing G, Travers I, Sagot B, Rudulier DL, Dupont L. Proline betaine uptake in Sinorhizobium meliloti: characterization of prb, an opp-like ABC transporter regulated by both proline betaine and salinity stress. J Bacteriol 2006; 188:6308–6317
    [Google Scholar]
  61. Liu G-H, Liu B, Liu Q-Y, Wang J-P, Che J-M et al. Bacillus xiapuensis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2019; 69:1714–1719 [View Article] [PubMed]
    [Google Scholar]
  62. Rao MPN, Dong Z-Y, Zhang H, Niu X-K, Zhang K et al. Bacillus antri sp. nov., isolated from cave soil. Int J Syst Evol Microbiol 2019; 69:2335–2339 [View Article] [PubMed]
    [Google Scholar]
  63. Rodríguez M, Reina JC, Béjar V, Llamas I. Psychrobacillus vulpis sp. nov., a new species isolated from faeces of a red fox in Spain. Int J Syst Evol Microbiol 2020; 70:882–888 [View Article] [PubMed]
    [Google Scholar]
  64. Fang Q, Wu Q, Huang H, Hu Y, Li C et al. Metabacillus arenae sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 2023; 73: [View Article]
    [Google Scholar]
  65. Hwang CY, Cho E-S, Yoon DJ, Cha I-T, Jung D-H et al. Genomic and physiological characterization of Metabacillus flavus sp. nov., a novel carotenoid-producing Bacilli isolated from Korean marine mud. Microorganisms 2022; 10:979 [View Article] [PubMed]
    [Google Scholar]
  66. Chen Y, Li Y, Shen J, Liu Q, Liu Y et al. Bacillus arachidis sp. nov., isolated from peanut rhizosphere soil. Curr Microbiol 2022; 79:231 [View Article]
    [Google Scholar]
  67. Kämpfer P, Lipski A, McInroy JA, Clermont D, Criscuolo A et al. Bacillus rhizoplanae sp. nov. from maize roots. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  68. Choi JY, Lee PC. Psychrobacillus glaciei sp. nov., a psychrotolerant species isolated from an Antarctic iceberg. Int J Syst Evol Microbiol 2020; 70:1947–1952 [View Article] [PubMed]
    [Google Scholar]
  69. Jeong JW, Kim YS, Kim SB. Metabacillus bambusae sp. nov., isolated from bamboo grove soil. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006656
Loading
/content/journal/ijsem/10.1099/ijsem.0.006656
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error