Skip to content
1887

Abstract

A polyphasic taxonomic study was carried out on strain T5W1, isolated from the roots of the aquatic plant . This isolate is Gram-negative, rod-shaped, motile, aerobic and non-pigmented. Nearly complete 16S rRNA gene sequence homology related the strain to , with 98.4% similarity to , and . Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) with the closest phylogenetic neighbour of T5W1 showed differences at the species level, further confirmed by differences in several physiological characteristics. The main fatty acids are summed feature 3 (C and/or C ), C , and C. The DNA G+C content is 59.3 mol%. Q-9 is the primary ubiquinone found, and phosphatidylethanolamine is the dominant polar lipid, with lesser amounts of phosphatidylglycerol, diphosphatidylglycerol and phosphatidylserine. Based on the results obtained, this bacterium is assigned to the genus as a new species with the name sp. nov., type strain T5W1 (=NRRL B-65714 =DSM 118085).

Funding
This study was supported by the:
  • Department of Biology, Slippery Rock University
    • Principle Award Recipient: ChrisMaltman
  • Slippery Rock University Faculty Student Research Grant
    • Principle Award Recipient: ChrisMaltman
  • Commonwealth of Pennsylvania University Biologists
    • Principle Award Recipient: KarlieVandeborne
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006637
2025-01-10
2025-01-25
Loading full text...

Full text loading...

References

  1. Migula N. Über ein neues System der Bakterienlysat. Arbeiten aus dem Bakteriologischen Institut der Technischen Hochschule zu Karlsruhe 1894; 1:235–238
    [Google Scholar]
  2. Peix A, Ramírez-Bahena MH, Velázquez E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect Genet Evol 2009; 9:1132–1147 [View Article] [PubMed]
    [Google Scholar]
  3. Spiers AJ, Buckling A, Rainey PB. The causes of Pseudomonas diversity. Microbiology 2000; 146:2345–2350 [View Article] [PubMed]
    [Google Scholar]
  4. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q et al. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol 2018; 20:2142–2159 [View Article] [PubMed]
    [Google Scholar]
  5. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Bacteriol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  6. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 2016; 21:573 [View Article] [PubMed]
    [Google Scholar]
  7. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [View Article] [PubMed]
    [Google Scholar]
  8. Höfte M, De Vos P. Plant pathogenic Pseudomonas species. In Gnanamanickam SS. ed Plant-Associated Bacteria Dordrecht: Springer; 2007 [View Article]
    [Google Scholar]
  9. Dorjey S, Dolkar D, Sharma R. Plant growth promoting rhizobacteria Pseudomonas: a review. Int J Curr Microbiol App Sci 2017; 6:1335–1344 [View Article]
    [Google Scholar]
  10. Santoyo G, Orozco-Mosqueda M del C, Govindappa M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol 2012; 22:855–872 [View Article]
    [Google Scholar]
  11. Shen X, Hu H, Peng H, Wang W, Zhang X. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genom 2013; 14:271 [View Article] [PubMed]
    [Google Scholar]
  12. Li H-B, Singh RK, Singh P, Song Q-Q, Xing Y-X et al. Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere. Front Microbiol 2017; 8:1268 [View Article] [PubMed]
    [Google Scholar]
  13. Lugtenberg BJ, Dekkers L, Bloemberg GV. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 2001; 39:461–490 [View Article] [PubMed]
    [Google Scholar]
  14. Lugtenberg BJ, Dekkers LC. What makes Pseudomonas bacteria rhizosphere competent?. Environ Microbiol 1999; 1:9–13 [View Article] [PubMed]
    [Google Scholar]
  15. Zboralski A, Filion M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Comput Struct Biotechnol J 2020; 18:3539–3554 [View Article] [PubMed]
    [Google Scholar]
  16. Höflich G, Wiehe W, Hecht-Buchholz C. Rhizosphere colonization of different crops with growth promoting Pseudomonas and Rhizobium bacteria. Microbiol Res 1995; 150:139–147 [View Article]
    [Google Scholar]
  17. Preston GM. Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B Biol Sci 2004; 359:907–918 [View Article] [PubMed]
    [Google Scholar]
  18. van Loon LC. Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 2007; 119:243–254 [View Article]
    [Google Scholar]
  19. Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 2009; 63:541–556 [View Article] [PubMed]
    [Google Scholar]
  20. Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J-P. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 2014; 378:1–33 [View Article]
    [Google Scholar]
  21. Nováková D, Švec P, Zeman M, Busse H-J, Mašlaňová I et al. Pseudomonas leptonychotis sp. nov., isolated from Weddell seals in Antarctica. Int J Syst Evol Microbiol 2020; 70:302–308 [View Article] [PubMed]
    [Google Scholar]
  22. Escalante AE, Caballero-Mellado J, Martínez-Aguilar L, Rodríguez-Verdugo A, González-González A et al. Pseudomonas cuatrocienegasensis sp. nov., isolated from an evaporating lagoon in the Cuatro Cienegas valley in Coahuila, Mexico. Int J Syst Evol Microbiol 2009; 59:1416–1420 [View Article] [PubMed]
    [Google Scholar]
  23. Timsy Spanner T, Ulrich A, Kublik S, Foesel BU et al. Pseudomonas campi sp. nov., a nitrate-reducing bacterium isolated from grassland soil. Int J Syst Evol Microbiol 2021; 71:004799 [View Article] [PubMed]
    [Google Scholar]
  24. Bozal N, Montes MJ, Mercadé E. Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. Int J Syst Evol Microbiol 2007; 57:2609–2612 [View Article] [PubMed]
    [Google Scholar]
  25. Vanparys B, Heylen K, Lebbe L, De Vos P. Pseudomonas peli sp. nov. and Pseudomonas borbori sp. nov., isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 2006; 56:1875–1881 [View Article] [PubMed]
    [Google Scholar]
  26. Jordan EO, Caldwell ME, Reiter D. Bacterial Motility. J Bacteriol 1934; 27:165–174 [View Article] [PubMed]
    [Google Scholar]
  27. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [PubMed]
    [Google Scholar]
  28. Holt JG, Krieg NR, Sneath PHA. Bergey’s Manual of Determinative Bacterology Baltimore, MD, USA: The Williams and Wilkins Co.; 1994
    [Google Scholar]
  29. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In Technical Note vol 101 2001
    [Google Scholar]
  30. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  31. Chen WP, Kuo TT. A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res 1993; 21:2260 [View Article] [PubMed]
    [Google Scholar]
  32. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  33. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  35. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:1–10 [View Article]
    [Google Scholar]
  36. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  37. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  38. Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 2017; 33:2946–2947 [View Article] [PubMed]
    [Google Scholar]
  39. Grimm D, Guy N, Lengyel G, Franks J, Maltman C. Gordonia metallireducens sp. nov., a tellurite- and selenite-resistant bacterium isolated from the sediment of an acid mine drainage stream. Int J Syst Evol Microbiol 2023; 73:006176 [View Article] [PubMed]
    [Google Scholar]
  40. Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R et al. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS One 2016; 11:e0150183 [View Article] [PubMed]
    [Google Scholar]
  41. Lee D-H, Moon S-R, Park Y-H, Kim J-H, Kim H et al. Pseudomonas taeanensis sp. nov., isolated from a crude oil-contaminated seashore. Int J Syst Evol Microbiol 2010; 60:2719–2723 [View Article] [PubMed]
    [Google Scholar]
  42. Wakabayashi H, Egusa S. Characteristics of a Pseudomonas sp. from an epizootic of pond-cultured eels (Anguilla japonica). Bull Jpn Soc Sci Fish 1972; 38:577–587 [View Article]
    [Google Scholar]
  43. Romanenko LA, Uchino M, Tebo BM, Tanaka N, Frolova GM et al. Pseudomonas marincola sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 2008; 58:706–710 [View Article] [PubMed]
    [Google Scholar]
  44. Palleroni N. Pseudomonas. In Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P et al. eds Bergey’s Manual of Systematics of Archaea and Bacteria 2015 [View Article]
    [Google Scholar]
  45. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article]
    [Google Scholar]
  46. Kumar A, Verma H, Singh V, Singh P, Singh S et al. Role of Pseudomonas sp. in sustainable agriculture and disease management. In Meena V, Mishra P, Bisht J, Pattanayak A. eds Agriculturally Important Microbes for Sustainable Agriculture Singapore: Springer; 2017 pp 195–215 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006637
Loading
/content/journal/ijsem/10.1099/ijsem.0.006637
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error