Skip to content
1887

Abstract

Yeast strains representing a novel asexual ascomycetous species were isolated from seven flowers. Sequencing of the chromosomal regions coding for the D1/D2 domains of the large subunit ribosomal RNA, the ITS1-5.8S-ITS2 segments and parts of the gene coding for the small subunit ribosomal RNA showed that the isolates were conspecific. Comparative analysis of these sequences and the corresponding sequences of the type strains of ascomycetous yeasts revealed that the strains represent a hitherto undescribed species belonging to the subclade of the genus . The new species is osmotolerant and can develop invasive pseudohyphae, but does not form spores. For the new species, the name f.a. (forma asexualis) is proposed. The holotype, preserved in a metabolically inactive state, is CBS 12960 (extype cultures: 2-1361 and CCY 90-2-1, NCAIM Y.02123). The GenBank accession numbers of barcode sequences are JX515983 (D1/D2 domain), JX515985 (ITS1-5.8S-ITS2 and partial 18S rRNA gene), PQ613837 ( partial sequence) and PQ613838 ( partial sequence). MycoBank: MB855459. The analysis of the D1/D2 and internal transcribed spacer (ITS) sequences of the type strains of species of the genus identified multiple multinucleotide indels that can be used as taxonomic markers (InDel markers). The indel patterns of the subclades are very different and homogeneous within the subclades. This result reinforces the idea raised, but also refuted, in previous studies that the subclades may represent different genera.

Funding
This study was supported by the:
  • Debreceni Egyetem
    • Principle Award Recipient: MatthiasSipiczki
  • Nemzeti Kutatási és Technológiai Hivatal (Award 2023-1.1.1-PIACI_FÓKUSZ-2024-00037)
    • Principle Award Recipient: MatthiasSipiczki
  • Nemzeti Kutatási Fejlesztési és Innovációs Hivatal (Award 2020-1.1.2-PIACI-KFI-2020-00130)
    • Principle Award Recipient: MatthiasSipiczki
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006629
2025-01-09
2025-01-15
Loading full text...

Full text loading...

References

  1. Lachance MA, Bowles JM, Chavarría Díaz MM, Janzen DH. Candida cleridarum, Candida tilneyi and Candida powellii, three new yeast species isolated from insects associated with flowers. Int J Syst Evol Microbiol 2001; 51:1201–1207 [View Article]
    [Google Scholar]
  2. Klaps J, Lievens B, Álvarez-Pérez S. Towards a better understanding of the role of nectar-inhabiting yeasts in plant-animal interactions. Fungal Biol Biotechnol 2020; 7:1 [View Article] [PubMed]
    [Google Scholar]
  3. Sandhu DK, Waraich MK. Yeasts associated with pollinating bees and flower nectar. Microb Ecol 1985; 11:51–58 [View Article] [PubMed]
    [Google Scholar]
  4. Sipiczki M. Candida stigmatis sp. nov., a new anamorphic yeast species isolated from flowers. FEMS Yeast Res 2010; 10:362–365 [View Article]
    [Google Scholar]
  5. Sipiczki M. Detection of yeast species also occurring in substrates associated with animals and identification of a novel dimorphic species in Verbascum flowers from Georgia. Antonie Van Leeuwenhoek 2013; 103:567–576 [View Article] [PubMed]
    [Google Scholar]
  6. de Vega C, Herrera CM. Microorganisms transported by ants induce changes in floral nectar composition of an ant‐pollinated plant. Am J Bot 2013; 100:792–800 [View Article]
    [Google Scholar]
  7. Alvarez-Pérez S, Herrera CM. Composition, richness and nonrandom assembly of culturable bacterial-microfungal communities in floral nectar of Mediterranean plants. FEMS Microbiol Ecol 2013; 83:685–699 [View Article] [PubMed]
    [Google Scholar]
  8. Lachance MA, Starmer WT, Rosa CA, Bowles JM, Barker JS et al. Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res 2001; 1:1–8 [View Article] [PubMed]
    [Google Scholar]
  9. Hong SG, Bae KS, Herzberg M, Titze A, Lachance M-A. Candida kunwiensis sp. nov., a yeast associated with flowers and bumblebees. Int J Syst Evol Microbiol 2003; 53:367–372 [View Article] [PubMed]
    [Google Scholar]
  10. Rosa CA, Lachance M-A, Teixeira LCRS, Pimenta RS, Morais PB. Metschnikowia cerradonensis sp. nov., a yeast species isolated from ephemeral flowers and their nitidulid beetles in Brazil. Int J Syst Evol Microbiol 2007; 57:161–165 [View Article] [PubMed]
    [Google Scholar]
  11. Sipiczki M. Pichia bruneiensis sp. nov., a biofilm-producing dimorphic yeast species isolated from flowers in Borneo. Int J Syst Evol Microbiol 2012; 62:3099–3104 [View Article] [PubMed]
    [Google Scholar]
  12. Barbosa AC, Morais CG, Morais PB, Rosa LH, Pimenta RS et al. Wickerhamiella pagnoccae sp. nov. and Candida tocantinsensis sp. nov., two ascomycetous yeasts from flower bracts of Heliconia psittacorum (Heliconiaceae). Int J Syst Evol Microbiol 2012; 62:459–464 [View Article] [PubMed]
    [Google Scholar]
  13. Hagler AN, Ribeiro JRA, Pinotti T, Brandão LR, Pimenta RS et al. Wickerhamiella slavikovae sp. nov. and Wickerhamiella goesii sp. nov., two yeast species isolated from natural substrates. Int J Syst Evol Microbiol 2013; 63:3099–3103 [View Article] [PubMed]
    [Google Scholar]
  14. Daniel H-M, Rosa CA, Thiago-Calaça PSS, Antonini Y, Bastos EMAF et al. Starmerella neotropicalis f. a., sp. nov., a yeast species found in bees and pollen. Int J Syst Evol Microbiol 2013; 63:3896–3903 [View Article] [PubMed]
    [Google Scholar]
  15. Sipiczki M. Starmerella syriaca f.a., sp. nov., an osmotolerant yeast species isolated from flowers in Syria. Antonie Van Leeuwenhoek 2015; 107:847–856 [View Article] [PubMed]
    [Google Scholar]
  16. Sipiczki M. Candida zemplinina sp. nov., an osmotolerant and psychrotolerant yeast that ferments sweet botrytized wines. Int J Syst Evol Microbiol 2003; 53:2079–2083 [View Article] [PubMed]
    [Google Scholar]
  17. O’Donell K. Fusarium and its near relatives. In Reynolds DR, Taylor JW. eds The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics Wallingford: CAB International; 1993 pp 225–233
    [Google Scholar]
  18. White TJ, Burns T, Lee S, Taylor J. Amplification and sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ. eds PCR Protocols: A Guide to Methods and Applications San Diego: Acadamic Press; 1990 pp 315–322
    [Google Scholar]
  19. Sipiczki M, Kajdacsi E. Jaminaea angkorensis gen. nov., sp. nov., a novel anamorphic fungus containing an S943 nuclear small-subunit rRNA group IB intron represents a basal branch of Microstromatales. Int J Syst Evol Microbiol 2009; 59:914–920 [View Article] [PubMed]
    [Google Scholar]
  20. Kurtzman CP, Robnett CJ. Phylogenetic relationships among yeasts of the “Saccharomyces complex” determined from multigene sequence analyses. FEMS Yeast Res 2003; 3:417–432 [View Article] [PubMed]
    [Google Scholar]
  21. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  22. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  23. Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008; 9:286–298 [View Article] [PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. Nei M the neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  25. Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 2010; 11:129 [View Article] [PubMed]
    [Google Scholar]
  26. Sipiczki M. Dimorphic cycle in Candida citri sp. nov., a novel yeast species isolated from rotting fruit in Borneo. FEMS Yeast Res 2011; 11:202–208 [View Article] [PubMed]
    [Google Scholar]
  27. Mitchison JM. Physiological and cytological methods for Schizosaccharomyces pombe. Methods Cell Physiol 1970; 4:131–165 [View Article]
    [Google Scholar]
  28. Kurtzman CP, Fell JW, Boekhout T, Roberts V. Methods for Isolation, Phenotypic Characterization and Maintenance of Yeasts, 5th edn Amsterdam: Elsevier Science; 2011 pp 87–110
    [Google Scholar]
  29. Tiwari S, Jadhav R, Avchar R, Lanjekar V, Datar M et al. Nectar yeast community of tropical flowering plants and assessment of their osmotolerance and xylitol-producing potential. Curr Microbiol 2021; 79:28 [View Article] [PubMed]
    [Google Scholar]
  30. Osiewacz HD. Molecular Biology of Fungal Development New York: Marcel Dekker; 2005
    [Google Scholar]
  31. Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 1992; 68:1077–1090 [View Article]
    [Google Scholar]
  32. Nakase T, Jindamorakot S, Imanishi Y, Am-in S, Ninomiya S. Two novel galactose-containing ascomycetous anamorphic yeast species isolated in thailand. J Gen Appl Microbiol 2010; 56:287–295 [View Article]
    [Google Scholar]
  33. Rosa CA, Lachance MA, Silva JOC, Teixeira ACP, Marini MM et al. Yeast communities associated with stingless bees. FEMS Yeast Res 2003; 4:271–275 [View Article] [PubMed]
    [Google Scholar]
  34. Pimentel MRC, Antonini Y, Martins RP, Lachance M-A, Rosa CA. Candida riodocensis and Candida cellae, two new yeast species from the Starmerella clade associated with solitary bees in the Atlantic rain forest of Brazil. FEMS Yeast Res 2005; 5:875–879 [View Article] [PubMed]
    [Google Scholar]
  35. Daniel H-M, Lachance M-A, Kurtzman CP. On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie van Leeuwenhoek 2014; 106:67–84 [View Article]
    [Google Scholar]
  36. Januário da Costa Neto D, Benevides de Morais P. The vectoring of Starmerella species and other yeasts by stingless bees in a Neotropical savanna. Fungal Ecology 2020; 47:100973 [View Article]
    [Google Scholar]
  37. Amoikon TLS, Grondin C, Djéni TN, Jacques N, Casaregola S. Starmerella reginensis f.a., sp. nov. and Starmerella kourouensis f.a., sp. nov., isolated from flowers in French Guiana. Int J Syst Evol Microbiol 2018; 68:2299–2305 [View Article] [PubMed]
    [Google Scholar]
  38. Alimadadi N, Soudi MR, Wang S-A, Wang Q-M, Talebpour Z et al. Starmerella orientalis f.a., sp. nov., an ascomycetous yeast species isolated from flowers. Int J Syst Evol Microbiol 2016; 66:1476–1481 [View Article] [PubMed]
    [Google Scholar]
  39. Li S-L, Li Z-Y, Yang L-Y, Zhou X-L, Dong M-H et al. Starmerella jinningensis sp. nov., a yeast species isolated from flowers of Erianthus rufipilus. Int J Syst Evol Microbiol 2013; 63:388–392 [View Article] [PubMed]
    [Google Scholar]
  40. Jindamorakot S, Limtong S, Yongmanitchai W, Tuntirungkij M, Potacharoen W. 2008; Candida ratchasimensis sp. nov. and candida khaoyaiensis sp. nov., two anamorphic yeast species isolated from flowers in thailand. FEMS Yeast Res 8:955–960 [View Article]
    [Google Scholar]
  41. Shibayama K, Miyazaki Y, Ikeda M, Yamaguchi K, Inaba S et al. Starmerella kisarazuensis f.a., sp. nov., a novel yeast isolated from Trifolium pratense flowers. Int J Syst Evol Microbiol 2024; 74:006253 [View Article]
    [Google Scholar]
  42. Pozo MI, Herrera CM, Bazaga P. Species richness of yeast communities in floral nectar of southern Spanish plants. Microb Ecol 2011; 61:82–91 [View Article] [PubMed]
    [Google Scholar]
  43. Pozo MI, Lachance M-A, Herrera CM. Nectar yeasts of two southern Spanish plants: the roles of immigration and physiological traits in community assembly. FEMS Microbiol Ecol 2012; 80:281–293 [View Article]
    [Google Scholar]
  44. Pozo MI, Herrera CM, Van den Ende W, Verstrepen K, Lievens B et al. The impact of nectar chemical features on phenotypic variation in two related nectar yeasts. FEMS Microbiol Ecol 2015; 91:fiv055 [View Article]
    [Google Scholar]
  45. Tokuoka K, Ishitani T, Goto S, Komagata K. Four new yeast species belonging to the genus Candida. J Gen Appl Microbiol 1987; 33:1–10 [View Article]
    [Google Scholar]
  46. James SA, Bond CJ, Roberts IN. Candida sorbosivorans sp. nov., a new member of the genus Candida Berkhout. Int J Syst Evol Microbiol 2001; 51:1215–1219 [View Article] [PubMed]
    [Google Scholar]
  47. Santos ARO, Leon MP, Barros KO, Freitas LFD, Hughes AFS et al. Starmerella camargoi f.a., sp. nov., Starmerella ilheusensis f.a., sp. nov., Starmerella litoralis f.a., sp. nov., Starmerella opuntiae f.a., sp. nov., Starmerella roubikii f.a., sp. nov. and Starmerella vitae f.a., sp. nov., isolated from flowers and bees, and transfer of related Candida species to the genus Starmerella as new combinations. Int J Syst Evol Microbiol 2018; 68:1333–1343 [View Article]
    [Google Scholar]
  48. Ashkenazy H, Cohen O, Pupko T, Huchon D. Indel reliability in indel-based phylogenetic inference. Genome Biol Evol 2014; 6:3199–3209 [View Article] [PubMed]
    [Google Scholar]
  49. Donath A, Stadler PF. Split-inducing indels in phylogenomic analysis. Algorithms Mol Biol 2018; 13:12 [View Article] [PubMed]
    [Google Scholar]
  50. Lachance MA, Daniel HM, Meyer W, Prasad GS, Gautam SP et al. The D1/D2 domain of the large-subunit rDNA of the yeast species Clavispora lusitaniae is unusually polymorphic. FEMS Yeast Res 2003; 4:253–258 [View Article] [PubMed]
    [Google Scholar]
  51. Sipiczki M. When barcoding fails: genome chimerization (admixing) and reticulation obscure phylogenetic and taxonomic relationships. Mol Ecol Resour 2022; 22:1762–1785 [View Article] [PubMed]
    [Google Scholar]
  52. Dessimoz C, Gil M. Phylogenetic assessment of alignments reveals neglected tree signal in gaps. Genome Biol 2010; 11:R37 [View Article] [PubMed]
    [Google Scholar]
  53. Oliva A, Pulicani S, Lefort V, Bréhélin L, Gascuel O et al. Accounting for ambiguity in ancestral sequence reconstruction. Bioinformatics 2019; 35:4290–4297 [View Article] [PubMed]
    [Google Scholar]
  54. Miadlikowska J, Lutzoni F, Goward T, Zoller S, Posada D. New approach to an old problem: incorporating signal from gap-rich regions of ITS and rDNA large subunit into phylogenetic analyses to resolve the Peltigera canina species complex. Mycologia 2003; 95:1181–1203 [View Article] [PubMed]
    [Google Scholar]
  55. Fain MG, Houde P. Parallel radiations in the primary clades of birds. Evolution 2004; 58:2558–2573 [View Article] [PubMed]
    [Google Scholar]
  56. Feliner GN, Rosselló JA. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol Phylogenet Evol 2007; 44:911–919 [View Article]
    [Google Scholar]
  57. Nagy LG, Kocsubé S, Csanádi Z, Kovács GM, Petkovits T et al. Re-Mind the Gap! Insertion – deletion data reveal neglected phylogenetic potential of the nuclear ribosomal internal transcribed spacer (ITS) of Fungi. PLoS One 2012; 7:e49794 [View Article]
    [Google Scholar]
  58. Luan PT, Ryder OA, Davis H, Zhang YP, Yu L. Incorporating indels as phylogenetic characters: impact for interfamilial relationships within Arctoidea (Mammalia: Carnivora). Mol Phylogenet Evol 2013; 66:748–756 [View Article] [PubMed]
    [Google Scholar]
  59. Lloyd DG, Calder VL. Multi‐residue gaps, a class of molecular characters with exceptional reliability for phylogenetic analyses. J of Evolutionary Biology 1991; 4:9–21 [View Article]
    [Google Scholar]
  60. Fang Q, Wang L, Yu H, Huang Y, Jiang X et al. Development of species-specific InDel markers in Citrus. Plant Mol Biol Rep 2018; 36:653–662 [View Article]
    [Google Scholar]
  61. Park I, Yang S, Kim WJ, Song J-H, Lee H-S et al. Sequencing and comparative analysis of the chloroplast genome of Angelica polymorpha and the development of a novel indel marker for species identification. Molecules 2019; 24:1038 [View Article] [PubMed]
    [Google Scholar]
  62. Wu C-S, Sudianto E, Hung Y-M, Wang B-C, Huang C-J et al. Genome skimming and exploration of DNA barcodes for Taiwan endemic cypresses. Sci Rep 2020; 10:20650 [View Article] [PubMed]
    [Google Scholar]
  63. Kim Y, Choi H, Shin J, Jo A, Lee K-E et al. Molecular discrimination of Cynanchum wilfordii and Cynanchum auriculatum by InDel markers of chloroplast DNA. Molecules 2018; 23:1337 [View Article]
    [Google Scholar]
  64. Paśko Ł, Ericson PGP, Elzanowski A. Phylogenetic utility and evolution of indels: a study in neognathous birds. Mol Phylogenet Evol 2011; 61:760–771 [View Article] [PubMed]
    [Google Scholar]
  65. González D, Cubeta MA, Vilgalys R. Phylogenetic utility of indels within ribosomal DNA and beta-tubulin sequences from fungi in the Rhizoctonia solani species complex. Mol Phylogenet Evol 2006; 40:459–470 [View Article] [PubMed]
    [Google Scholar]
  66. Gupta RS, Kanter-Eivin DA. AppIndels.com server: a web-based tool for the identification of known taxon-specific conserved signature indels in genome sequences. Validation of its usefulness by predicting the taxonomic affiliation of >700 unclassified strains of Bacillus species. Int J Syst Evol Microbiol 2023; 73:005844 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006629
Loading
/content/journal/ijsem/10.1099/ijsem.0.006629
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error