Skip to content
1887

Abstract

A novel Gram-stain-positive, rod-shaped, endospore-forming bacterium with peritrichous flagella, designated as P96 was isolated from the surface of maize roots. Strain P96 grew optimally at 28 °C, pH 7.0. The strain contained A1γ -Dpm-direct in the cell-wall peptidoglycan. The dominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The genome size of strain P96 was 4.8 Mb, and the G+C content was 50.01%. Phylogenomic analyses based on the whole-genome sequences classified the strain into the genus . The digital DNA–DNA hybridization and average nucleotide identity relatedness analysis resulted in values below the threshold for prokaryotic species delineation, with the highest values observed for KCTC 33519 (29.4 and 85.2%, respectively). Genotypic data together with phenotypic properties supported the classification of strain P96 as representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is P96 (=LMG 32802 = NCAIM B 02678).

Funding
This study was supported by the:
  • National Research, Development and Innovation Office (Award ÚNKP-21-3)
    • Principle Award Recipient: MártonDalma
  • Magyar Tudományos Akadémia (Award Lendület-Programme (GM) (LP2020-5/2020))
    • Principle Award Recipient: MarótiGergely
  • Magyar Agrár- és Élettudományi Egyetem (Award Research Excellence Programme)
    • Principle Award Recipient: FarkasMilán
  • Nemzeti Kutatási, Fejlesztési és Innovaciós Alap (Award 2020-1.1.2-PIACI-KFI-2020-00020)
    • Principle Award Recipient: ApplicableNot
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006628
2025-01-08
2025-01-15
Loading full text...

Full text loading...

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (ash, farrow, wallbanks and collins) using a PCR probe test. proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 1993; 64:253–260 [View Article] [PubMed]
    [Google Scholar]
  2. Ash C, Priest FG, Collins MD. Paenibacillus gen. nov. in validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Bacteriol 2003; 53:1701–1702 [View Article]
    [Google Scholar]
  3. Rivas R, Mateos PF, Martínez-Molina E, Velázquez E. Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol 2005; 55:405–408 [View Article] [PubMed]
    [Google Scholar]
  4. Akaracharanya A, Lorliam W, Tanasupawat S, Lee KC, Lee JS. Paenibacillus cellulositrophicus sp. nov., a cellulolytic bacterium from Thai soil. Int J Syst Evol Microbial 2009; 59:2680–2684 [View Article]
    [Google Scholar]
  5. Traiwan J, Park MH, Kim W. Paenibacillus puldeungensis sp. nov., isolated from a grassy sandbank. Int J Syst Evol Microbiol 2011; 61:670–673 [View Article] [PubMed]
    [Google Scholar]
  6. Kämpfer P, Busse H-J, McInroy JA, Hu C-H, Kloepper JW et al. Paenibacillus nebraskensis sp. nov., isolated from the root surface of field-grown maize. Int J Syst Evol Microbiol 2017; 67:4956–4961 [View Article]
    [Google Scholar]
  7. Baik KS, Lim CH, Choe HN, Kim EM, Seong CN. Paenibacillus rigui sp. nov., isolated from a freshwater wetland. Int J Syst Evol Microbiol 2011; 61:529–534 [View Article] [PubMed]
    [Google Scholar]
  8. Sáez-Nieto JA, Medina-Pascual MJ, Carrasco G, Garrido N, Fernandez-Torres MA et al. Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species. New Microbes New Infect 2017; 19:19–27 [View Article] [PubMed]
    [Google Scholar]
  9. Di Micco R, Schneider M, Nüesch R. Postoperative Paenibacillus thiaminolyticus wound infection, Switzerland. Emerg Infect Dis 2021; 27:1984–1986 [View Article]
    [Google Scholar]
  10. Singh RR, Wesemael WML. Endophytic Paenibacillus polymyxa LMG27872 inhibits Meloidogyne incognita parasitism, promoting tomato growth through a dose-dependent effect. Front Plant Sci 2022; 13:961085 [View Article] [PubMed]
    [Google Scholar]
  11. Wang L, Baek SH, Cui Y, Lee HG, Lee ST. Paenibacillus sediminis sp. nov., a xylanolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2012; 62:1284–1288 [View Article] [PubMed]
    [Google Scholar]
  12. Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016; 15:203 [View Article] [PubMed]
    [Google Scholar]
  13. Anderson GR. Ecology of Azotobacter in soil of the Palouse region. I: occurrence. Soil Sci 1958; 86:57–62 [View Article]
    [Google Scholar]
  14. Soergel DAW, Dey N, Knight R, Brenner SE. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J 2012; 6:1440–1444 [View Article] [PubMed]
    [Google Scholar]
  15. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 1990; 56:1919–1925 [View Article] [PubMed]
    [Google Scholar]
  16. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  21. Huang Z, Wenjuan Dai W, Zhou Z, Guoxiang Wang G, Huang Z et al. Paenibacillus terreus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:243–247 [View Article]
    [Google Scholar]
  22. Yin J, He D, Li X, Zeng X, Tian M et al. Paenibacillus enshidis sp. nov., isolated from the nodules of Robinia pseudoacacia L. Curr Microbiol 2015; 71:321–325 [View Article]
    [Google Scholar]
  23. Lai W-A, Hameed A, Lin S-Y, Hung M-H, Hsu Y-H et al. Paenibacillus medicaginis sp. nov. a chitinolytic endophyte isolated from a root nodule of alfalfa (Medicago sativa L.). Int J Syst Evol Microbiol 2015; 65:3853–3860 [View Article] [PubMed]
    [Google Scholar]
  24. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Deng M, Jiang R, Sun F, Zhang X. eds Research in Computational Molecular Biology. RECOMB 2013;Lecture Notes in Computer Science Berlin, Heidelberg: Springer; [View Article] [PubMed]
    [Google Scholar]
  25. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  26. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  27. Na S-I, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  28. Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 2016; 6:24373 [View Article] [PubMed]
    [Google Scholar]
  29. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article]
    [Google Scholar]
  31. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  32. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  33. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300 [View Article] [PubMed]
    [Google Scholar]
  34. Schardinger F. Bacillus macerans, ein Aceton bildender Rottebacillus. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Abteilung II 1905; 14:772–781
    [Google Scholar]
  35. Hong YY, Ma YC, Zhou YG, Gao F, Liu HC et al. Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus. Int J Syst Evol Microbiol 2009; 59:2656–2661 [View Article] [PubMed]
    [Google Scholar]
  36. Nelson DM, Glawe AJ, Labeda DP, Cann IKO, Mackie RI. Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., psychrotolerant, xylan-degrading bacteria from Alaskan tundra. Int J Syst Evol Microbiol 2009; 59:1708–1714 [View Article] [PubMed]
    [Google Scholar]
  37. Kukolya J, Bata-Vidacs I, Luzics S, Tóth E, Zs K et al. Xylanibacillus composti gen. nov., sp. nov., isolated from compost. Int J Syst Evol Microbiol 2018; 68:698–702 [View Article]
    [Google Scholar]
  38. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr Microbiol 2008; 57:503–507 [View Article] [PubMed]
    [Google Scholar]
  39. Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Analytical Biochem 1987; 160:47–56 [View Article]
    [Google Scholar]
  40. Pikovskaya RI. Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya 1948; 17:362–370
    [Google Scholar]
  41. Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiol 1951; 26:192–195 [View Article] [PubMed]
    [Google Scholar]
  42. Jacobson CB, Pasternak JJ, Glick BR. Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 1994; 40:1019–1025 [View Article]
    [Google Scholar]
  43. Farkas M, Táncsics A, Kriszt B, Benedek T, Tóth EM et al. Zoogloea oleivorans sp. nov., a floc-forming, petroleum hydrocarbon-degrading bacterium isolated from biofilm. Int J Syst Evol Microbiol 2015; 65:274–279 [View Article] [PubMed]
    [Google Scholar]
  44. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article] [PubMed]
    [Google Scholar]
  45. OHAD I, DANON D, HESTRIN S. The use of shadow-casting technique for measurement of the width of elongated particles. J Cell Biol 1963; 17:321–326 [View Article] [PubMed]
    [Google Scholar]
  46. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article]
    [Google Scholar]
  47. Cowan ST, Steel KJ. Manual of Identification of Medical Bacteria Cambridge: University Press; 1974
    [Google Scholar]
  48. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982; 16:772–774 [View Article] [PubMed]
    [Google Scholar]
  49. Atlas RM. Handbook of Microbiological Media, 4th ed CRC Press; 2010 p 1290
    [Google Scholar]
  50. Smibert RM, Krieg NR. Phenotypic Characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology vol 607–654 Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  51. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  52. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article]
    [Google Scholar]
  53. Breil C, Abert Vian M, Zemb T, Kunz W, Chemat F. “Bligh and Dyer” and Folch methods for solid-liquid-liquid extraction of lipids from microorganisms. comprehension of solvatation mechanisms and towards substitution with alternative solvents. Int J Mol Sci 2017; 18:708 [View Article] [PubMed]
    [Google Scholar]
  54. Priest FG. Genus I. Paenibacillus Ash, Priest and Collins 1994. In Vos PD, Garrity GM, Jones D, Krieg NR, Ludwig W et al. eds In Bergey’s Manual of Systematic Bacteriology, 2009, 2nd edn., vol. 3. New York: Springer; 1994 pp 269–295
    [Google Scholar]
  55. Sun J, Lu F, Luo Y, Bie L, Xu L et al. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res 2023; 51:W397–W403 [View Article]
    [Google Scholar]
  56. Shimoyama Y. "COGclassifier: a tool for classifying prokaryote protein sequences into COG functional category." Computer software 2022 https://github.com/moshi4/COGclassifier 2022
  57. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006628
Loading
/content/journal/ijsem/10.1099/ijsem.0.006628
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error