Skip to content
1887

Abstract

Four novel nontuberculous mycobacteria were discovered from a historical strain collection at the International Reference Laboratory of Mycobacteriology at Statens Serum Institut in Copenhagen, Denmark. Phylogenetic analysis combining the 16S , internal transcribed spacer and 23S elements, as well as a single-copy core-gene (, , and ) analysis of these freeze-dried mycobacteria, clinically isolated from gastric lavage samples between 1948 and 1955, showed to be associated with type strains grouping within the Terra and Fortuitum-Vaccae clade. Phenotypic characteristics, biochemical properties and fatty acid and mycolic acid profiles supported the classification as novel strains. A genomic comparison to the closest related type strain was done by calculating average nucleotide identity and DNA:DNA hybridization values, which showed 87.9% and 33.0% for Mu0050, 85.2% and 27.4% for Mu0053, 85.3% and 27.6% for Mu0083 and 93.3% and 50.1% for Mu0102, respectively. The names proposed for the new species are sp. nov. (Mu0050=ITM 501390=CCUG 77525), sp. nov. (Mu0053=ITM 501391=CCUG 77526), sp. nov. (Mu0083=ITM 501392=CCUG 77527) and sp. nov. (Mu0102=ITM 501393=CCUG 77528).

Funding
This study was supported by the:
  • Danmarks Frie Forskningsfond (Award 3127-00035B)
    • Principle Award Recipient: Emilie Sinding IversenXenia
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006620
2025-01-07
2025-01-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/75/1/ijsem006620.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006620&mimeType=html&fmt=ahah

References

  1. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  2. Opperman CJ, Singh S, Davids T, Cox H, Warren R et al. Identifying non-tuberculosis mycobacteria: is it time to introduce new molecular assays?. S Afr Med J 2023; 113:4–5 [View Article] [PubMed]
    [Google Scholar]
  3. Meehan CJ, Barco RA, Loh Y-H, Cogneau S, Rigouts L. Reconstituting the genus Mycobacterium. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  4. Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol 2018; 9:67 [View Article] [PubMed]
    [Google Scholar]
  5. Dahl VN, Mølhave M, Fløe A, van Ingen J, Schön T et al. Global trends of pulmonary infections with nontuberculous mycobacteria: a systematic review. Int J Infect Dis 2022; 125:120–131 [View Article] [PubMed]
    [Google Scholar]
  6. Seth-Smith HMB, Imkamp F, Tagini F, Cuénod A, Hömke R et al. Discovery and characterization of Mycobacterium basiliense sp. nov., a nontuberculous Mycobacterium isolated from human lungs. Front Microbiol 2018; 9:3184 [View Article] [PubMed]
    [Google Scholar]
  7. Ghielmetti G, Rosato G, Trovato A, Friedel U, Kirchgaessner C et al. Mycobacterium helveticum sp. nov., a novel slowly growing mycobacterial species associated with granulomatous lesions in adult swine. Int J Syst Evol Microbiol 2021; 71:ijsem004615 [View Article] [PubMed]
    [Google Scholar]
  8. Runyon EH. Identification of mycobacterial pathogens utilizing colony characteristics. Am J Clin Pathol 1970; 54:578–586 [View Article] [PubMed]
    [Google Scholar]
  9. Tortoli E, Gitti Z, Klenk H-P, Lauria S, Mannino R et al. Survey of 150 strains belonging to the Mycobacterium terrae complex and description of Mycobacterium engbaekii sp. nov., Mycobacterium heraklionense sp. nov. and Mycobacterium longobardum sp. nov. Int J Syst Evol Microb 2013; 63:401–411 [View Article]
    [Google Scholar]
  10. Ohta M, Pan YT, Laine RA, Elbein AD. Trehalose-based oligosaccharides isolated from the cytoplasm of Mycobacterium smegmatis. relation to trehalose-based oligosaccharides attached to lipid. Eur J Biochem 2002; 269:3142–3149 [View Article] [PubMed]
    [Google Scholar]
  11. van Ingen J, Bendien SA, de Lange WCM, Hoefsloot W, Dekhuijzen PNR et al. Clinical relevance of non-tuberculous mycobacteria isolated in the Nijmegen-Arnhem region, The Netherlands. Thorax 2009; 64:502–506 [View Article] [PubMed]
    [Google Scholar]
  12. Liu G, Yu X, Luo J, Hu Y, Dong L et al. Mycobacterium vicinigordonae sp. nov., a slow-growing scotochromogenic species isolated from sputum. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  13. Nouioui I, Sangal V, Carro L, Teramoto K, Jando M et al. Two novel species of rapidly growing mycobacteria: Mycobacterium lehmannii sp. nov. and Mycobacterium neumannii sp. nov. Int J Syst Evol Microb 2017; 67:4948–4955 [View Article]
    [Google Scholar]
  14. Iversen XES, Norman A, Folkvardsen DB, Svensson E, Rasmussen EM et al. Successful direct whole genome sequencing and revivification of freeze-dried nontuberculous mycobacteria after more than half a century of storage. Microbiol Spectr 2022; 10:e0031022 [View Article] [PubMed]
    [Google Scholar]
  15. Bjorn-Mortensen K, Zallet J, Lillebaek T, Andersen AB, Niemann S et al. Direct DNA extraction from Mycobacterium tuberculosis frozen stocks as a reculture-independent approach to whole-genome sequencing. J Clin Microbiol 2015; 53:2716–2719 [View Article] [PubMed]
    [Google Scholar]
  16. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  18. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  19. Tortoli E, Meehan CJ, Grottola A, Fregni Serpini G, Fabio A et al. Genome-based taxonomic revision detects a number of synonymous taxa in the genus Mycobacterium. Infect Genet Evol 2019; 75:103983 [View Article] [PubMed]
    [Google Scholar]
  20. Fedrizzi T, Meehan CJ, Grottola A, Giacobazzi E, Fregni Serpini G et al. Genomic characterization of nontuberculous mycobacteria. Sci Rep 2017; 7:45258 [View Article] [PubMed]
    [Google Scholar]
  21. Hashemi-Shahraki A, Bostanabad SZ, Heidarieh P, Titov LP, Khosravi AD et al. Species spectrum of nontuberculous mycobacteria isolated from suspected tuberculosis patients, identification by multi locus sequence analysis. Infect Genet Evol 2013; 20:312–324 [View Article] [PubMed]
    [Google Scholar]
  22. Huang W-C, Yu M-C, Huang Y-W. Identification and drug susceptibility testing for nontuberculous mycobacteria. J Formos Med Assoc 2020; 119 Suppl 1:S32–S41 [View Article] [PubMed]
    [Google Scholar]
  23. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  24. Kim BJ, Lee SH, Lyu MA, Kim SJ, Bai GH et al. Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). J Clin Microbiol 1999; 37:1714–1720 [View Article] [PubMed]
    [Google Scholar]
  25. Murray PAs. Manual of Clinical Microbiology, 7th ed ASM Press; 1999
    [Google Scholar]
  26. Hagen SR, Thompson JD. Analysis of mycolic acids by high-performance liquid chromatography and fluorimetric detection implications for the identification of mycobacteria in clinical samples. J Chromatograph A 1995; 692:167–172 [View Article]
    [Google Scholar]
  27. Butler WR, Guthertz LS. Mycolic acid analysis by high-performance liquid chromatography for identification of Mycobacterium species. Clin Microbiol Rev 2001; 14:704–726 [View Article] [PubMed]
    [Google Scholar]
  28. Alcaide F, Amlerová J, Bou G, Ceyssens PJ, Coll P et al. How to: identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clin Microbiol Infect 2018; 24:599–603 [View Article] [PubMed]
    [Google Scholar]
  29. CLSI Susceptibility Testing of Mycobacteria, Nocardia Spp., and Other Aerobic Actinomycetes, 3rd edition 3 ed: Clinical and Laboratory Standards Institute; 2018
    [Google Scholar]
  30. Pavlik I, Ulmann V, Hubelova D, Weston RT. Nontuberculous mycobacteria as sapronoses: a review. Microorganisms 2022; 10:1345 [View Article] [PubMed]
    [Google Scholar]
  31. Tsukamura M. Mycobacterium chitae: a new species. Jpn J Microbiol 1967; 11:43–47 [View Article] [PubMed]
    [Google Scholar]
  32. Vasireddy R, Vasireddy S, Brown-Elliott BA, Wengenack NL, Eke UA et al. Correction for Vasireddy et al., Mycobacterium arupense, Mycobacterium heraklionense, and a newly proposed species, “Mycobacterium virginiense” sp. nov., but not Mycobacterium nonchromogenicum, as species of the Mycobacterium terrae complex causing tenosynovitis and osteomyelitis. J Clin Microbiol 2017; 55:985 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006620
Loading
/content/journal/ijsem/10.1099/ijsem.0.006620
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error