Skip to content
1887

Abstract

Two novel bifidobacteria (designated F806-1 and F814-1.1) isolated from the gut of honeybee () were characterized in the present study. 16S rRNA gene sequence analysis indicated that strains F806-1 and F814-1.1 belonged to the group and were most closely related to W8102 and W8117, having 98.9–99.4% 16S rRNA gene sequence similarities. Strains F806-1 and F814-1.1 had the highest 16S rRNA gene sequence similarities (99.1 and 99.4 %) with W8117. Strains F806-1 and F814-1.1 had 73.2–90.5% average nucleotide identity, 21.5–40.8% digital DNA–DNA hybridization and 67.4–92.5% average amino acid identity values with type strains of all species in the group. Acid production from -arabinose, -arabinose, -xylose, -xylose, -galactose, -fructose, -mannose and methyl--glucopyranoside; tolerance to 3% NaCl and activity of cystine arylamidase, -acetyl--glucosaminidase, -mannosidase and -fucosidase could differentiate strains F806-1 and F814-1.1 from the type strain of . Based on the data obtained in the present study, a novel species, sp. nov., is proposed, and the type strain is F806-1 (=CCTCC AB 2024129=JCM 37002).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award (no. 31471594))
    • Principal Award Recipient: ChunTao Gu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006599
2024-12-04
2025-11-11

Metrics

Loading full text...

Full text loading...

References

  1. Wang TY, Wang H, Gu CT. Bifidobacterium apicola sp. nov., isolated from the gut of honeybee (Apis mellifera). Figshare 2024 [View Article]
    [Google Scholar]
  2. Lugli GA, Calvete-Torre I, Alessandri G, Milani C, Turroni F et al. Phylogenetic classification of ten novel species belonging to the genus Bifidobacterium comprising B. phasiani sp. nov., B. pongonis sp. nov., B. saguinibicoloris sp. nov., B. colobi sp. nov., B. simiiventris sp. nov., B. santillanense sp. nov., B. miconis sp. nov., B. amazonense sp. nov., B. pluvialisilvae sp. nov., and B. miconisargentati sp. nov. Syst Appl Microbiol 2021; 44:126273 [View Article] [PubMed]
    [Google Scholar]
  3. Jiang C-S, Li CY, Gu CT. Bifidobacterium apis sp. nov., isolated from the gut of honeybee (Apis mellifera). Int J Syst Evol Microbiol 2024; 74:006358 [View Article]
    [Google Scholar]
  4. Olofsson TC, Modesto M, Pascarelli S, Scarafile D, Mattarelli P. Bifidobacterium mellis sp. nov., isolated from the honey stomach of the honey bee Apis mellifera. Int J Syst Evol Microbiol 2023; 73:005766 [View Article]
    [Google Scholar]
  5. Li TT, Zhang HX, Gu CT. Bifidobacterium mizhiense sp. nov., isolated from the gut of honeybee (Apis mellifera). Int J Syst Evol Microbiol 2022; 72:005390 [View Article]
    [Google Scholar]
  6. Chen J, Wang J, Zheng H. Characterization of Bifidobacterium apousia sp. nov., Bifidobacterium choladohabitans sp. nov., and Bifidobacterium polysaccharolyticum sp. nov., three novel species of the genus Bifidobacterium from honey bee gut. Syst Appl Microbiol 2021; 44:126247 [View Article] [PubMed]
    [Google Scholar]
  7. Scardovi V, Trovatelli LD. New species of Bifidobacteria from Apis mellifica L. and Apis indica F. A contribution to the taxonomy and biochemistry of the genus Bifidobacterium. In Zentralblatt Für Bakteriologie, Parasitenkunde, Infektionskrankheiten Und Hygiene Abteilung II vol 123 1969 pp 64–88
    [Google Scholar]
  8. Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol 1980; 30:225–420 [View Article]
    [Google Scholar]
  9. Killer J, Kopečný J, Mrázek J, Koppová I, Havlík J et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2011; 61:1315–1321 [View Article] [PubMed]
    [Google Scholar]
  10. Alberoni D, Gaggìa F, Baffoni L, Modesto MM, Biavati B et al. Bifidobacterium xylocopae sp. nov. and Bifidobacterium aemilianum sp. nov., from the carpenter bee (Xylocopa violacea) digestive tract. Syst Appl Microbiol 2019; 42:205–216 [View Article] [PubMed]
    [Google Scholar]
  11. Biavati B, Scardovi V, Moore WEC. Electrophoretic patterns of proteins in the genus Bifidobacterium and proposal of four new species. Int J Syst Bacteriol 1982; 32:358–373 [View Article]
    [Google Scholar]
  12. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  13. Jiang C-S, Li CY, Gu CT. The type strain of Bifidobacterium indicum Scardovi and Trovatelli 1969 (Approved Lists 1980) is ATCC 25912, not DSM 20214, and rejection to reclassify Bifidobacterium coryneforme as Bifidobacterium indicum. Curr Microbiol 2024; 81:168 [View Article] [PubMed]
    [Google Scholar]
  14. Li TT, Liu DD, Fu ML, Gu CT. Proposal of Lactobacillus kosoi Chiou et al. 2018 as a later heterotypic synonym of Lactobacillus micheneri Mcfrederick et al. 2018, elevation of Lactobacillus plantarum subsp. argentoratensis to the species level as Lactobacillus argentoratensis sp. nov., and Lactobacillus zhaodongensis sp. nov., isolated from traditional Chinese pickle and the intestinal tract of a honey bee (Apis mellifera). Int J Syst Evol Microbiol 2018; 70:3123–3133
    [Google Scholar]
  15. Ventura M, Canchaya C, Casale AD, Dellaglio F, Neviani E et al. Analysis of bifidobacterial evolution using a multilocus approach. Int J Syst Evol Microbiol 2006; 56:2783–2792 [View Article] [PubMed]
    [Google Scholar]
  16. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  17. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 1989; 29:170–179 [View Article] [PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  20. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  21. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  22. Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res 2023; 51:D678–D689 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  24. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  25. Na S-I, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  26. Kim J, Na S-I, Kim D, Chun J. UBCG2: up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609–615 [View Article] [PubMed]
    [Google Scholar]
  27. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  30. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  31. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  32. Lomsadze A, Gemayel K, Tang S, Borodovsky M. Modeling leaderless transcription and atypical genes results in more accurate gene prediction in prokaryotes. Genome Res 2018; 28:1079–1089 [View Article] [PubMed]
    [Google Scholar]
  33. Neuzil-Bunesova V, Lugli GA, Modrackova N, Makovska M, Mrazek J et al. Bifidobacterium canis sp. nov., a novel member of the Bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog (Canis lupus f. familiaris). Int J Syst Evol Microbiol 2020; 70:5040–5047 [View Article]
    [Google Scholar]
  34. Ventura M, Zink R. Comparative sequence analysis of the tuf and recA genes and restriction fragment length polymorphism of the internal transcribed spacer region sequences supply additional tools for discriminating Bifidobacterium lactis from Bifidobacterium animalis. Appl Environ Microbiol 2003; 69:7517–7522 [View Article] [PubMed]
    [Google Scholar]
  35. Ventura M, Zink R, Fitzgerald GF, van Sinderen D. Gene structure and transcriptional organization of the dnaK operon of Bifidobacterium breve UCC 2003 and application of the operon in bifidobacterial tracing. Appl Environ Microbiol 2005; 71:487–500 [View Article] [PubMed]
    [Google Scholar]
  36. Mekadim C, Bunešová V, Vlková E, Hroncová Z, Killer J. Genetic marker-based multi-locus sequence analysis for classification, genotyping, and phylogenetics of the family Bifidobacteriaceae as an alternative approach to phylogenomics. Antonie van Leeuwenhoek 2019; 112:1785–1800 [View Article] [PubMed]
    [Google Scholar]
  37. Killer J, Mekadim C, Pechar R, Bunešová V, Vlková E. The threonine-tRNA ligase gene region is applicable in classification, typing, and phylogenetic analysis of bifidobacteria. J Microbiol 2018; 56:713–721 [View Article] [PubMed]
    [Google Scholar]
  38. Killer J, Mekadim C, Bunešová V, Mrázek J, Hroncová Z et al. Glutamine synthetase type I (glnAI) represents a rewarding molecular marker in the classification of bifidobacteria and related genera. Folia Microbiol 2020; 65:143–151 [View Article]
    [Google Scholar]
  39. Zhang HX, Gu CT. Levilactobacillus humaensis sp. nov. and Lapidilactobacillus luobeiensis sp. nov., isolated from traditional Chinese pickle. Int J Syst Evol Microbiol 2022; 72:005661 [View Article] [PubMed]
    [Google Scholar]
  40. Lin S-Y, Hameed A, Tsai C-F, Hung M-H, Young C-C. Agrilactobacillus fermenti sp. nov. isolated from fermented vegetable residue. Int J Syst Evol Microbiol 2022; 72:005336 [View Article] [PubMed]
    [Google Scholar]
  41. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 vol 101 1990
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  43. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  44. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300 [View Article] [PubMed]
    [Google Scholar]
  45. Modesto M, Checcucci A, Mattarelli P. Identification of Bifidobacteria by the phosphoketolase assay. Methods Mol Biol 2021; 2278:141–148 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006599
Loading
/content/journal/ijsem/10.1099/ijsem.0.006599
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error