1887

Abstract

Misidentifications of and species often occur due to their overlapping traits, including similar cell shapes, biochemical characteristics and environmental preferences. These revisions aim to address significant overlaps and correct previous misidentifications. Phylogenetic analysis using 16S rRNA gene and core protein sequences has positioned 257T and 36T within the genus . This reclassification is further substantiated by high 16S rRNA gene sequence similarities and average amino acid identity values, which align these species more closely with than with . As a result, we propose the reclassification of 257T and 36T as comb. nov. and comb. nov., respectively, to accurately reflect their taxonomic status. Additionally, average nucleotide identity and digital DNA–DNA hybridization values indicate that KCTC 9943T and DSM 25126T, as well as DSM 20447T and CMS 76orT, surpass the thresholds for subspecies classification. Therefore, we propose the recognition of four new subspecies: subsp. comb. nov., subsp. comb. nov., subsp. comb. nov. and subsp. comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006586
2024-11-29
2024-12-14
Loading full text...

Full text loading...

References

  1. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 1995; 45:682–692 [View Article] [PubMed]
    [Google Scholar]
  2. Stackebrandt E, Rainey FA, Ward-rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491 [View Article]
    [Google Scholar]
  3. Dastager SG, Krishnamurthi S, Rameshkumar N, Dharne M. The family micrococcaceae. In The Prokaryotes 2014 pp 455–498 [View Article]
    [Google Scholar]
  4. Georg LK, Brown JM. Rothia, gen. nov., an aerobic genus of the family Actinomycetaceae. Int J Syst Bacteriol 1967; 17:79–88 [View Article]
    [Google Scholar]
  5. Daneshvar MI, Hollis DG, Weyant RS, Jordan JG, MacGregor JP et al. Identification of some charcoal-black-pigmented CDC fermentative coryneform group 4 isolates as Rothia dentocariosa and some as Corynebacterium aurimucosum: proposal of Rothia dentocariosa emend. Georg and Brown 1967, Corynebacterium aurimucosum emend. Yassin et al. 2002, and Corynebacterium nigricans Shukla et al. 2003 pro synon. Corynebacterium aurimucosum. J Clin Microbiol 2004; 42:4189–4198 [View Article] [PubMed]
    [Google Scholar]
  6. Chou Y-J, Chou J-H, Lin K-Y, Lin M-C, Wei Y-H et al. M. Rothia terrae sp. nov. isolated from soil in Taiwan. Int J Syst Evol Microbiol 2008; 58:84–88 [View Article] [PubMed]
    [Google Scholar]
  7. Braun MS, Wang E, Zimmermann S, Boutin S. Isolated from the preen glands of great spotted woodpeckers (dendrocopos major). Syst Appl Microbiol 2018; 41:38–43 [View Article]
    [Google Scholar]
  8. Kandi V, Palange P, Vaish R, Bhatti AB, Kale V et al. Emerging bacterial infection: identification and clinical significance of Kocuria species. Cureus 2016; 8:e731 [View Article] [PubMed]
    [Google Scholar]
  9. Tang S-K, Wang Y, Lou K, Mao P-H, Xu L-H et al. Kocuria halotolerans sp. nov., an actinobacterium isolated from a saline soil in China. Int J Syst Evol Microbiol 2009; 59:1316–1320 [View Article]
    [Google Scholar]
  10. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  11. Chalita M, Kim YO, Park S, Oh H-S, Cho JH et al. EzBioCloud: a genome-driven database and platform for microbiome identification and discovery. Int J Syst Evol Microbiol 2024; 74:006421 [View Article] [PubMed]
    [Google Scholar]
  12. Kim J, Na S-I, Kim D, Chun J. UBCG2: up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609–615 [View Article] [PubMed]
    [Google Scholar]
  13. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  14. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article] [PubMed]
    [Google Scholar]
  15. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article]
    [Google Scholar]
  16. Rossi-Tamisier M, Benamar S, Raoult D, Fournier PE. Cautionary tale of using 16S rRNA gene sequence similarity values in identification of human-associated bacterial species. Int J Syst Evol Microbiol 2015; 65:1929–1934 [View Article] [PubMed]
    [Google Scholar]
  17. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  18. Xu L, Sun C, Fang C, Oren A, Xu XW. Genomic-based taxonomic classification of the family Erythrobacteraceae. Int J Syst Evol Microbiol 2020; 70:4470–4495 [View Article]
    [Google Scholar]
  19. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  20. Gtari M. Taxogenomic status of phylogenetically distant Frankia clusters warrants their elevation to the rank of genus: a description of Protofrankia gen. nov., Parafrankia gen. nov., and Pseudofrankia gen. nov. as three novel genera within the family Frankiaceae. Front Microbiol 2022; 13: [View Article]
    [Google Scholar]
  21. Kim SB, Nedashkovskaya OI, Mikhailov VV, Han SK, Kim K-O et al. Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 2004; 54:1617–1620 [View Article]
    [Google Scholar]
  22. Dastager SG, Tang SK, Srinivasan K, Lee JC, Li WJ. Kocuria indica sp. nov., isolated from a sediment sample. Int J Syst Evol Microbiol 2014; 64:869–874 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article] [PubMed]
    [Google Scholar]
  24. Reddy GSN, Prakash JSS, Prabahar V, Matsumoto GI, Stackebrandt E et al. Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 2003; 53:183–187 [View Article] [PubMed]
    [Google Scholar]
  25. Austin Br. Bergey’s Manual of Systematics of Archaea and Bacteria, 1- 13.Bergey’s Manual of Systematics of Archaea and Bacteria, John Wiley & Sons, Inc., in Association with Bergey’s Manual Trust 2015 pp 1–13 [View Article]
    [Google Scholar]
  26. Stackebrandt E, Schumann Pk. Bergey’s Manual of Systematics of Archaea and Bacteria, John Wiley & Sons, Inc., in Association with Bergey’s Manual Trust 2015 pp 1–15 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006586
Loading
/content/journal/ijsem/10.1099/ijsem.0.006586
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error