1887

Abstract

Three Gram-stain-negative, aerobic, short rod-shaped and motile strains (FXH3W, SHGZ20W and SMYT11W) were isolated from freshwater environments in China. Comparisons based on the 16S rRNA gene sequences indicated that strains FXH3W and SHGZ20W showed the highest 16S rRNA gene sequence similarity of about 99.6% to ‘’ MIC 1.5, and strain SMYT11W showed the highest 16S rRNA gene sequence similarity of 99.8% to D4P002, respectively. Observing the phylogenetic trees reconstructed based on the 16S rRNA gene sequences, the species of genera and were not monophyletic and often mixed together. The further reconstructed phylogenomic tree and Genome Taxonomy Database also showed that the species of both genera were polyphyletic, implying that the current taxonomic status of the species of both genera was questionable. The calculated OrthoANIu, digital DNA–DNA hybridization and average amino acid sequence identity (AAI) values supported that strains FXH3W and SHGZ20W should belong to the same novel species and strain SMYT11W should also represent an independent novel species. Combining the AAI values and phylogenomic analyses, the species of genera and should be reassigned to 12 genera (, , , , , , , , , , and ). The AAI values 69.5–76.0% were also proposed as the -specific thresholds for genus delineation. Strain SMYT11W should represent a novel species of the genus , for which the name sp. nov. (type strains SMYT11W=GDMCC 1.4275=KCTC 8304) is proposed. Strains FXH3W and SHGZ20W should represent a novel species of a new genus gen. nov., sp. nov. The type strain of the type species is FXH3W (=GDMCC 1.4096=KCTC 8154).

Keyword(s): Luteimonas and Lysobacter
Funding
This study was supported by the:
  • Yunnan Provincial Ministry of Science and Technology (Award 202203AC100002-02, 202305AM070002 and 202301AT070100)
    • Principle Award Recipient: HuibinLu
  • National Natural Science Foundation of China (Award 32101321)
    • Principle Award Recipient: YujingWang
  • National Natural Science Foundation of China (Award U2102216)
    • Principle Award Recipient: PengXing
  • the grants of Science and Technology Projects of Southwest Joint Graduate School of Yunnan Province (Award 202302AP370001)
    • Principle Award Recipient: LiChen
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006585
2024-11-18
2024-12-08
Loading full text...

Full text loading...

References

  1. Lu HB, Li C, Wang YJ, Xing P, Wu QL. Luteimonas flava sp. nov. and Aquilutibacter rugosus gen. nov., sp. nov., isolated from freshwater environments in china and reexamining the taxonomic status of genera Luteimonas and Lysobacter. Figshare 2024 [View Article]
    [Google Scholar]
  2. Christensen P, Cook FD. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 1978; 28:367–393 [View Article]
    [Google Scholar]
  3. Park JH, Kim R, Aslam Z, Jeon CO, Chung YR. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 2008; 58:387–392 [View Article] [PubMed]
    [Google Scholar]
  4. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50 Pt 1:273–282 [View Article] [PubMed]
    [Google Scholar]
  5. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of Bacteroidetes. Front Microbiol 2016; 7:2003 [View Article] [PubMed]
    [Google Scholar]
  6. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  7. Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE et al. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie Van Leeuwenhoek 2015; 107:467–485 [View Article] [PubMed]
    [Google Scholar]
  8. Singh H, Won K, Du J, Yang J-E, Akter S et al. Lysobacter agri sp. nov., a bacterium isolated from soil. Antonie Van Leeuwenhoek 2015; 108:553–561 [View Article] [PubMed]
    [Google Scholar]
  9. Xu L, Huang XX, Fan DL, Sun JQ. Lysobacter alkalisoli sp. nov., a chitin-degrading strain isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2020; 70:1273–1281 [View Article] [PubMed]
    [Google Scholar]
  10. Kim KR, Kim KH, Khan SA, Kim HM, Han DM et al. Lysobacter arenosi sp. nov. and Lysobacter solisilvae sp. nov. isolated from soil. J Microbiol 2021; 59:709–717 [View Article] [PubMed]
    [Google Scholar]
  11. Siddiqi MZ, Im WT. Lysobacter hankyongensis sp. nov., isolated from activated sludge and Lysobacter sediminicola sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 2016; 66:212–218 [View Article] [PubMed]
    [Google Scholar]
  12. Ye X-M, Chu C-W, Shi C, Zhu J-C, He Q et al. Lysobacter caeni sp. nov., isolated from the sludge of a pesticide manufacturing factory. Int J Syst Evol Microbiol 2015; 65:845–850 [View Article] [PubMed]
    [Google Scholar]
  13. Chhetri G, Kim J, Kim I, Seo T. Lysobacter caseinilyticus, sp. nov., a casein hydrolyzing bacterium isolated from sea water. Antonie Van Leeuwenhoek 2019; 112:1349–1356 [View Article] [PubMed]
    [Google Scholar]
  14. Yoon J. Polyphasic characterization of Lysobacter maris sp. nov., a bacterium isolated from seawater. Curr Microbiol 2016; 72:282–287 [View Article]
    [Google Scholar]
  15. Lee SY, Kim PS, Sung H, Hyun DW, Bae JW. Lysobacter ciconiae sp. nov., and Lysobacter avium sp. nov., isolated from the faeces of an Oriental stork. J Microbiol 2022; 60:469–477 [View Article] [PubMed]
    [Google Scholar]
  16. Lin S-Y, Hameed A, Wen C-Z, Liu Y-C, Hsu Y-H et al. Lysobacter lycopersici sp. nov., isolated from tomato plant Solanum lycopersicum. Antonie Van Leeuwenhoek 2015; 107:1261–1270 [View Article] [PubMed]
    [Google Scholar]
  17. Xu S, Li A, Zhang MX, Yao Q, Zhu H. Lysobacter penaei sp. nov., isolated from intestinal content of a Pacific white shrimp (Penaeus vannamei). Int J Syst Evol Microbiol 2021; 71:004593
    [Google Scholar]
  18. Chen W, Zhao Y-L, Cheng J, Zhou X-K, Salam N et al. Lysobacter cavernae sp. nov., a novel bacterium isolated from a cave sample. Antonie Van Leeuwenhoek 2016; 109:1047–1053 [View Article] [PubMed]
    [Google Scholar]
  19. Wen C, Xi L, She R, Zhao S, Hao Z et al. Lysobacter chengduensis sp. nov. Isolated from the air of captive Ailuropoda melanoleuca enclosures in Chengdu, China. Curr Microbiol 2016; 72:88–93 [View Article] [PubMed]
    [Google Scholar]
  20. Rani P, Mukherjee U, Verma H, Kamra K, Lal R. Luteimonas tolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2016; 66:1851–1856 [View Article] [PubMed]
    [Google Scholar]
  21. Margesin R, Zhang D-C, Albuquerque L, Froufe HJC, Egas C et al. Lysobacter silvestris sp. nov., isolated from alpine forest soil, and reclassification of Luteimonas tolerans as Lysobacter tolerans comb. nov. Int J Syst Evol Microbiol 2018; 68:1571–1577 [View Article] [PubMed]
    [Google Scholar]
  22. Cha Q-Y, Zhou X-K, Zhang X-F, Li M, Wei Y-Q et al. Luteimonas lumbrici sp. nov., a novel bacterium isolated from wormcast. Int J Syst Evol Microbiol 2020; 70:604–610 [View Article] [PubMed]
    [Google Scholar]
  23. Zhang X, Wu N, Geng K, Yang P, Chu C et al. Lysobacter sedimenti sp. nov., isolated from the sediment, and reclassification of Luteimonas lumbrici as Lysobacter lumbrici comb. nov. Curr Microbiol 2022; 79:381 [View Article]
    [Google Scholar]
  24. Ten LN, Jung H-M, Im W-T, Yoo S-A, Oh H-M et al. Lysobacter panaciterrae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2009; 59:958–963 [View Article] [PubMed]
    [Google Scholar]
  25. Jin C-Z, Song X, Sung YJ, Jin F-J, Li T et al. Lysobacter profundi sp. nov., isolated from freshwater sediment and reclassification of Lysobacter panaciterrae as Luteimonas panaciterrae comb. nov. Int J Syst Evol Microbiol 2020; 70:3878–3887 [View Article]
    [Google Scholar]
  26. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  27. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Sequencing Techniques in Bacterial Systematics New York, USA: Wiley; 1991 pp 115–175
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  29. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  33. Kluge AG, Farris JS. Quantitative phyletics and the evolution of Anurans. Syst Zool 1969; 18:1 [View Article]
    [Google Scholar]
  34. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  35. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  36. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  37. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  38. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article]
    [Google Scholar]
  40. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article]
    [Google Scholar]
  41. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 2010; 11:119 [View Article]
    [Google Scholar]
  42. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res 2019; 47:D590–D595 [View Article] [PubMed]
    [Google Scholar]
  43. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [View Article] [PubMed]
    [Google Scholar]
  44. Vinuesa P, Ochoa-Sánchez LE, Contreras-Moreira B. GET_PHYLOMARKERS, a software package to select optimal orthologous clusters for phylogenomics and inferring pan-genome phylogenies, used for a critical geno-taxonomic revision of the genus Stenotrophomonas. Front Microbiol 2018; 9:771 [View Article] [PubMed]
    [Google Scholar]
  45. Zhu XF. Modern Experimental Technique of Microbiology Hangzhou, China: Zhejiang University Press; 2011
    [Google Scholar]
  46. Lu HB, Xing P, Phurbu D, Tang Q, Wu QL. Pelagibacterium montanilacus sp. nov., an alkaliphilic bacterium isolated from Lake Cuochuolong on the Tibetan Plateau. Int J Syst Evol Microbiol 2018; 68:2220–2225 [View Article]
    [Google Scholar]
  47. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  48. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands DC. eds Methods in Phytobacteriology Budapest, Hungary: Akademiai; 1990 pp 199–204
    [Google Scholar]
  49. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  50. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  51. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  52. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  53. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  54. Gilroy R, Ravi A, Getino M, Pursley I, Horton DL et al. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ 2021; 9:e10941 [View Article] [PubMed]
    [Google Scholar]
  55. Mafakheri H, Taghavi SM, Zarei S, Portier P, Dimkić I et al. Xanthomonas bonasiae sp. nov. and Xanthomonas youngii sp. nov., isolated from crown gall tissues. Int J Syst Evol Microbiol 2022; 72:005418 [View Article]
    [Google Scholar]
  56. Deng Y, Han X-F, Jiang Z-M, Yu L-Y, Li Y et al. Characterization of three Stenotrophomonas strains isolated from different ecosystems and proposal of Stenotrophomonas mori sp. nov. and Stenotrophomonas lacuserhaii sp. nov. Front Microbiol 2022; 13:1056762 [View Article]
    [Google Scholar]
  57. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300 [View Article] [PubMed]
    [Google Scholar]
  58. Dunger G, Guzzo CR, Andrade MO, Jones JB, Farah CS. Xanthomonas citri subsp. citri type IV Pilus is required for twitching motility, biofilm development, and adherence. Mol Plant Microbe Interact 2014; 27:1132–1147 [View Article] [PubMed]
    [Google Scholar]
  59. Lin P, Yan ZF, Li CT. Luteimonas cellulosilyticus sp. nov., cellulose-degrading bacterium isolated from soil in Changguangxi National Wetland Park, China. Curr Microbiol 2020; 77:1341–1347 [View Article] [PubMed]
    [Google Scholar]
  60. Ulrich K, Becker R, Behrendt U, Kube M, Schneck V et al. Physiological and genomic characterisation of Luteimonas fraxinea sp. nov., a bacterial species associated with trees tolerant to ash dieback. Syst Appl Microbiol 2022; 45:126333 [View Article] [PubMed]
    [Google Scholar]
  61. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:W479–W485 [View Article] [PubMed]
    [Google Scholar]
  62. Zhang H, Zhao HZ, Liu J, Qin W, Huang X. Luteimonas weifangensis sp. nov., isolated from bensulfuron-methyl contaminated watermelon Soil. Curr Microbiol 2020; 77:3787–3792 [View Article]
    [Google Scholar]
  63. Lee JC, Whang KS. Lysobacter telluris sp. nov., isolated from Korean rhizosphere soil. Arch Microbiol 2021; 203:287–293 [View Article] [PubMed]
    [Google Scholar]
  64. Oh KH, Kang SJ, Jung YT, Oh TK, Yoon JH. Lysobacter dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61:1089–1093 [View Article] [PubMed]
    [Google Scholar]
  65. Xu J, Sheng M, Yang Z, Qiu J, Zhang J et al. Lysobacter gilvus sp. nov., isolated from activated sludge. Arch Microbiol 2021; 203:7–11 [View Article] [PubMed]
    [Google Scholar]
  66. Wang X, Wang Y-H, Yang H-X, Chuang S-C, Zhou C-F et al. Lysobacter lactosilyticus sp. nov., a novel β-galactosidase producing bacterial strain isolated from farmland soil applied with amino acid fertilizer. Curr Microbiol 2023; 80:43 [View Article]
    [Google Scholar]
  67. Bai H, Lv H, Deng A, Jiang X, Li X et al. Lysobacter oculi sp. nov., isolated from human Meibomian gland secretions. Antonie Van Leeuwenhoek 2020; 113:13–20 [View Article] [PubMed]
    [Google Scholar]
  68. Busse H-J, Huptas C, Baumgardt S, Loncaric I, Spergser J et al. Proposal of Lysobacter pythonis sp. nov. isolated from royal pythons (Python regius). Syst Appl Microbiol 2019; 42:326–333 [View Article] [PubMed]
    [Google Scholar]
  69. Weon H-Y, Kim B-Y, Kim M-K, Yoo S-H, Kwon S-W et al. Lysobacter niabensis sp. nov. and Lysobacter niastensis sp. nov., isolated from greenhouse soils in Korea. Int J Syst Evol Microbiol 2007; 57:548–551 [View Article]
    [Google Scholar]
  70. Woo CY, Kim J. Lysobacter terrestris sp. nov., isolated from soil. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  71. Liu M, Liu Y, Wang Y, Luo X, Dai J et al. Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. Int J Syst Evol Microbiol 2011; 61:433–437 [View Article]
    [Google Scholar]
  72. Zhang L, Bai J, Wang Y, Wu G-L, Dai J et al. Lysobacter korlensis sp. nov. and Lysobacter bugurensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61:2259–2265 [View Article]
    [Google Scholar]
  73. Im W-T, Siddiqi MZ, Kim S-Y, Huq MdA, Lee JH et al. Lysobacter lacus sp. nov., isolated from from lake sediment. Int J Syst Evol Microbiol 2020; 70:2211–2216 [View Article]
    [Google Scholar]
  74. Ten LN, Jeon J, Elderiny NS, Kim MK, Lee S-Y et al. Lysobacter segetis sp. nov., Isolated from Soil. Curr Microbiol 2020; 77:166–172 [View Article]
    [Google Scholar]
  75. Xiao M, Zhou X-K, Chen X, Duan Y-Q, Alkhalifah DHM et al. Lysobacter tabacisoli sp. nov., isolated from rhizosphere soil of Nicotiana tabacum L. Int J Syst Evol Microbiol 2019; 69:1875–1880 [View Article]
    [Google Scholar]
  76. Li W, Elderiny NS, Ten LN, Lee S-Y, Kim MK et al. Lysobacter terrigena sp. nov., isolated from a Korean soil sample. Arch Microbiol 2020; 202:637–643 [View Article]
    [Google Scholar]
  77. Jeong SE, Lee HJ, Jeon CO. Lysobacter aestuarii sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2016; 66:1346–1351 [View Article] [PubMed]
    [Google Scholar]
  78. Liu Y, Zhou L, Yang X, Li P, Dai J et al. Lysobacter chinensis sp. nov., a cellulose-degrading strain isolated from cow dung compost. Antonie Van Leeuwenhoek 2022; 115:1031–1040 [View Article] [PubMed]
    [Google Scholar]
  79. Choi H, Im WT, Park JS. Lysobacter spongiae sp. nov., isolated from spongin. J Microbiol 2018; 56:97–103 [View Article] [PubMed]
    [Google Scholar]
  80. Bae HS, Im WT, Lee ST. Lysobacter concretionis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket reactor. Int J Syst Evol Microbiol 2005; 55:1155–1161 [View Article] [PubMed]
    [Google Scholar]
  81. Liu Z, Jiang P, Niu G, Wang W, Li J. Lysobacter antarcticus sp. nov., an SUF-system-containing bacterium from Antarctic coastal sediment. Int J Syst Evol Microbiol 2022; 72:72 [View Article]
    [Google Scholar]
  82. Luo G, Shi Z, Wang G. Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. Int J Syst Evol Microbiol 2012; 62:1659–1665 [View Article] [PubMed]
    [Google Scholar]
  83. Yassin AF, Chen W-M, Hupfer H, Siering C, Kroppenstedt RM et al. Lysobacter defluvii sp. nov., isolated from municipal solid waste. Int J Syst Evol Microbiol 2007; 57:1131–1136 [View Article] [PubMed]
    [Google Scholar]
  84. Xie B, Li T, Lin X, Wang C-J, Chen Y-J et al. Lysobacter erysipheiresistens sp. nov., an antagonist of powdery mildew, isolated from tobacco-cultivated soil. Int J Syst Evol Microbiol 2016; 66:4016–4021 [View Article] [PubMed]
    [Google Scholar]
  85. Lucena T, Sánchez O, Sanz-Saez I, Acinas SG, Garrido L et al. Parvicella tangerina gen. nov., sp. nov. (Parvicellaceae fam. nov., Flavobacteriales), first cultured representative of the marine clade UBA10066, and Lysobacter luteus sp. nov., from activated sludge of a seawater-processing wastewater treatment plant. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  86. Mao S, Li S, Guo B, Mu W, Hou X et al. Lysobacter selenitireducens sp. nov., isolated from river sediment. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  87. Romanenko LA, Uchino M, Tanaka N, Frolova GM, Mikhailov VV. Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. Int J Syst Evol Microbiol 2008; 58:370–374 [View Article] [PubMed]
    [Google Scholar]
  88. Luo Y, Dong H, Zhou M, Huang Y, Zhang H et al. Lysobacter psychrotolerans sp. nov., isolated from soil in the Tianshan Mountains, Xinjiang, China. Int J Syst Evol Microbiol 2019; 69:926–931 [View Article] [PubMed]
    [Google Scholar]
  89. Weon H-Y, Kim B-Y, Baek Y-K, Yoo S-H, Kwon S-W et al. Two novel species, Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int J Syst Evol Microbiol 2006; 56:947–951 [View Article] [PubMed]
    [Google Scholar]
  90. Wang G-L, Wang L, Chen H-H, Shen B, Li S-P et al. Lysobacter ruishenii sp. nov., a chlorothalonil-degrading bacterium isolated from a long-term chlorothalonil-contaminated soil. Int J Syst Evol Microbiol 2011; 61:674–679 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006585
Loading
/content/journal/ijsem/10.1099/ijsem.0.006585
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error