Skip to content
1887

Abstract

The purpose of this study is to better characterize and complete the classification of two bacterial strains, CECT 9275 and CECT 9623, isolated from drinking water systems and affiliated to the genus by partial 16S rRNA gene sequence comparison. Hence, we report here the phenotypic, genomic and phylogenetic characterization performed on these strains. Both strains grow on R2A agar forming mucous, bright yellow colonies, developing at 26 °C in 48 h. They produce flexirubin and are oxidase and catalase positive, mesophilic and non-halophilic. The cells of strain CECT 9275 are curved rods mainly associated in pairs, forming nearly closed rings or resembling the shape of the number three, to long spirals resembling a corkscrew. Its draft genome has an estimated size of 7.23 Mbp (G+C content 45.4%). Strain CECT 9623 appeared on wet mounts as straight rods, mostly in pairs, sometimes forming long filaments (up to 20 µm). Its draft genome is shorter, with an estimated size of 6.45 Mbp (G+C content is 46.1%). Overall genome relatedness indexes clearly define them as separate organisms, so based on all the data collected, we propose the species sp. nov. with type strain AB1 (=CECT 9275=LMG 32341) and sp. nov. with type strain AB67 (=CECT 9623=LMG 32342).

Funding
This study was supported by the:
  • Universitat de València (Award UV-INV-AE19-1199655)
    • Principle Award Recipient: MaríaJ. Pujalte
  • Generalitat Valenciana (Award AICO-2020-181)
    • Principle Award Recipient: MaríaJ. Pujalte
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006570
2024-11-18
2025-07-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/11/ijsem006570.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006570&mimeType=html&fmt=ahah

References

  1. Chelius MK, Triplett EW. Dyadobacter fermentans gen. nov., sp. nov., a novel gram-negative bacterium isolated from surface-sterilized Zea mays stems. Int J Syst Evol Microbiol 2000; 50 Pt 2:751–758 [View Article] [PubMed]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Reddy GSN, Garcia-Pichel F. Dyadobacter. In Bergey’s Manual of Systematics of Archaea and Bacteria 2015 [View Article]
    [Google Scholar]
  4. Reddy GSN, Garcia-Pichel F. Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado Plateau, USA, and an emended description of the genus Dyadobacter chelius and Triplett 2000. Int J Syst Evol Microbiol 2005; 55:1295–1299 [View Article] [PubMed]
    [Google Scholar]
  5. Chaturvedi P, Reddy GSN, Shivaji S. Dyadobacter hamtensis sp. nov., from Hamta glacier, located in the Himalayas, India. Int J Syst Evol Microbiol 2005; 55:2113–2117 [View Article]
    [Google Scholar]
  6. Chen L, Jiang F, Xiao M, Dai J, Kan W et al. Dyadobacter arcticus sp. nov., isolated from Arctic soil. Int J Syst Evol Microbiol 2013; 63:1616–1620 [View Article]
    [Google Scholar]
  7. Lee M, Woo SG, Park J, Yoo SA. Dyadobacter soli sp. nov., a starch-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol 2010; 60:2577–2582 [View Article]
    [Google Scholar]
  8. Wang L, Chen L, Ling Q, Li C, Tao Y et al. Dyadobacter jiangsuensis sp. nov., a methyl red degrading bacterium isolated from a dye-manufacturing factory. Int J Syst Evol Microbiol 2015; 65:1138–1143 [View Article]
    [Google Scholar]
  9. He X-L, Zhou D, Gao H, Huang F, Li H et al. Dyadobacter bucti sp. nov., isolated from subsurface sediment. Int J Syst Evol Microbiol 2020; 70:2281–2287 [View Article]
    [Google Scholar]
  10. Liu QM, Im WT, Lee M, Yang DC, Lee ST. Dyadobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2006; 56:1939–1944 [View Article]
    [Google Scholar]
  11. Qu J-H, Yue Y-F, Zhou J, Qu L-B, Wang L-F. Dyadobacter flavalbus sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2020; 70:1064–1070 [View Article]
    [Google Scholar]
  12. Chun J, Kang JY, Joung Y, Kim H, Joh K et al. Dyadobacter jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013; 63:1788–1792 [View Article]
    [Google Scholar]
  13. Shen L, Liu Y, Yao T, Wang N, Xu B et al. Dyadobacter tibetensis sp. nov., isolated from glacial ice core. Int J Syst Evol Microbiol 2013; 63:3636–3639 [View Article]
    [Google Scholar]
  14. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  15. Pinar-Méndez A, Fernández S, Baquero D, Vilaró C, Galofré B et al. Rapid and improved identification of drinking water bacteria using the Drinking Water Library, a dedicated MALDI-TOF MS database. Water Res 2021; 203:117543 [View Article] [PubMed]
    [Google Scholar]
  16. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300 [View Article] [PubMed]
    [Google Scholar]
  17. Arahal DR, Sánchez E, Macián MC, Garay E. Value of recN sequences for species identification and as a phylogenetic marker within the family “Leuconostocaceae.”. Int Microbiol 2008; 11:33–39 [PubMed]
    [Google Scholar]
  18. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A et al. BLAST: a more efficient report with usability improvements. Nucleic Acids Res 2013; 41:W29–W33 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  22. Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Deng M, Jiang R, Sun F, Zhang X. eds Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science vol 7821 Berlin, Heidelberg: Springer; [View Article]
    [Google Scholar]
  23. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  24. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  25. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  26. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  28. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4e1900v1 [View Article]
    [Google Scholar]
  29. Na S-I, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  30. Dow L, Morrissey KL, Willems A, Kroth PG. Complete genome sequence of Dyadobacter sp. 32, isolated from a culture of the freshwater diatom Cymbella microcephala. Mar Genom 2020; 52:100720 [View Article]
    [Google Scholar]
  31. Loza-Correa M, Gomez-Valero L, Buchrieser C. Circadian clock proteins in prokaryotes: hidden rhythms?. Front Microbiol 2010; 1:130 [View Article] [PubMed]
    [Google Scholar]
  32. Bernardet J-F, Nakagawa Y, Holmes B. Subcommittee On The Taxonomy Of Flavobacterium And Cytophaga-Like Bacteria Of The International Committee On Systematics Of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  33. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. European J Appl Microbiol Biotechnol 1978; 5:123–127 [View Article]
    [Google Scholar]
  34. Lucena T, Ruvira MA, Macián MC, Arahal DR, Aznar R et al. Chryseobacterium potabilaquae sp. nov., Chryseobacterium aquaeductus sp. nov. and Chryseobacterium fistulae sp. nov., from drinking water systems. Int J Syst Evol Microbiol 2021; 71:005020 [View Article]
    [Google Scholar]
  35. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  36. MIDI Sherlock Microbial Identification System Operating Manual, Version 6.1 Newark, DE: MIDI Inc; 2008
    [Google Scholar]
  37. Matias Rodrigues JF, Schmidt TSB, Tackmann J, von Mering C. MAPseq: highly efficient k-mer search with confidence estimates, for rRNA sequence analysis. Bioinformatics 2017; 33:3808–3810 [View Article] [PubMed]
    [Google Scholar]
  38. Hitch TCA, Riedel T, Oren A, Overmann J, Lawley TD et al. Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME Commun 2021; 1:16 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006570
Loading
/content/journal/ijsem/10.1099/ijsem.0.006570
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error