Skip to content
1887

Abstract

A facultative anaerobic Gram-negative bacterium, designated as strain 2205BS29-5, was isolated from a marine sponge, , in Beomseom on Jeju Island, Republic of Korea, and taxonomically characterized. The cells were catalase and oxidase positive, non-motile, coccoid-rod shaped and capable of poly-β-hydroxybutyrate production. Growth was observed at 10–37 °C (optimum, 25 °C) and pH 5.0–8.0 (optimum, pH 7.0), and in the presence of 0–9% NaCl (w/v) (optimum, 3.0–4.0%). The major cellular fatty acids and respiratory quinone were identified as summed feature 8 (C 7/C 6) and Q-10, respectively. The major polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, four phosphoglycolipids, two unidentified amino lipids and eight unidentified lipids. The DNA G+C content was 67.8%. Strain 2205BS29-5 was most closely represented by 11-3 and MJ17 with 97.8 and 97.5% 16S rRNA gene sequence similarities, respectively. Phylogenetic analyses based on 16S rRNA genes and whole-genome sequences showed that strain 2205BS29-5 was affiliated with the genus . Genomic analysis showed that strain 2205BS29-5 could synthesize vitamin B family (folate and cobalamin) and ectoine. The average nucleotide identity and digital DNA–DNA hybridization values between strain 2205BS29-5T and 11-3 were 77.1% and 18.8%, respectively, and with MJ17 were 78.4 and 21.2%, respectively. Based on phylogenetic, chemotaxonomic and genome relatedness analyses, strain 2205BS29-5 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 2205BS29-5 (=LMG 33062 =KACC 23240).

Funding
This study was supported by the:
  • Ministry of Education (Award 2021R1I1A3046479)
    • Principal Award Recipient: Jin-SookPark
  • National Marine Biodiversity Institute of Korea
    • Principal Award Recipient: Jin-SookPark
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006566
2024-10-30
2025-11-12

Metrics

Loading full text...

Full text loading...

References

  1. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 1969; 19:375–390 [View Article]
    [Google Scholar]
  2. Lyu L, Lai Q, Li J, Yu Z, Shao Z. Paracoccus amoyensis sp. nov., isolated from the surface seawater along the coast of Xiamen island, China. Int J Syst Evol Microbiol 2021; 71:004685 [PubMed]
    [Google Scholar]
  3. Lyu L, Zhi B, Lai Q, Shao Z, Yu Z. Paracoccus xiamenensis sp. nov., isolated from seawater on the Xiamen. Int J Syst Evol Microbiol 2020; 70:4285–4290 [View Article] [PubMed]
    [Google Scholar]
  4. Lin D, Zhu S, Chen Y, Huang Y, Yang J et al. Paracoccus indicus sp. nov., isolated from surface seawater in the Indian Ocean. Antonie van Leeuwenhoek 2019; 112:927–933 [View Article] [PubMed]
    [Google Scholar]
  5. Xue H, Piao CG, Guo MW, Wang LF, Li Y. Paracoccus aerius sp. nov., isolated from air. Int J Syst Evol Microbiol 2017; 67:2586–2591 [View Article] [PubMed]
    [Google Scholar]
  6. Dong X, Zhang G, Xiong Q, Liu D, Wang D et al. Paracoccus salipaludis sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2018; 68:3812–3817 [View Article] [PubMed]
    [Google Scholar]
  7. Sun X, Luo P, Li M. Paracoccus angustae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:3469–3475 [View Article] [PubMed]
    [Google Scholar]
  8. Rai A, N S, G S, A S, G D et al. Paracoccus aeridis sp. nov., an indole-producing bacterium isolated from the rhizosphere of an orchid, Aerides maculosa. Int J Syst Evol Microbiol 2020; 70:1720–1728 [View Article]
    [Google Scholar]
  9. Lin P, Yan Z-F, Won K-H, Yang J-E, Li C-T et al. Paracoccus hibiscisoli sp. nov., isolated from the rhizosphere of Mugunghwa (Hibiscus syriacus). Int J Syst Evol Microbiol 2017; 67:2452–2458 [View Article] [PubMed]
    [Google Scholar]
  10. Lee M, Woo SG, Park G, Kim MK. Paracoccus caeni sp. nov., isolated from sludge. Int J Syst Evol Microbiol 2011; 61:1968–1972 [View Article]
    [Google Scholar]
  11. Liu XY, Wang BJ, Jiang CY, Liu SJ. Paracoccus sulfuroxidans sp. nov., a sulfur oxidizer from activated sludge. Int J Syst Evol Microbiol 2006; 56:2693–2695 [View Article] [PubMed]
    [Google Scholar]
  12. Sheu SY, Hsieh TY, Young CC, Chen WM. Paracoccus fontiphilus sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2018; 68:2054–2060 [View Article]
    [Google Scholar]
  13. Liu Y, Xie Q, Hong K, Li L, Zhao Y et al. Paracoccus siganidrum sp. nov., isolated from fish gastrointestinal tract. Antonie van Leeuwenhoek 2013; 103:1133–1139 [View Article] [PubMed]
    [Google Scholar]
  14. Zhang Y-X, Li X, Li F-L, Ma S-C, Zheng G-D et al. Paracoccus alkanivorans sp. nov., isolated from a deep well with oil reservoir water. Int J Syst Evol Microbiol 2020; 70:2312–2317 [View Article]
    [Google Scholar]
  15. Hentschel U, Piel J, Degnan SM, Taylor MW. Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 2012; 10:641–654 [View Article] [PubMed]
    [Google Scholar]
  16. Pita L, Rix L, Slaby BM, Franke A, Hentschel U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 2018; 6:46 [View Article] [PubMed]
    [Google Scholar]
  17. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  18. de Goeij JM, Moodley L, Houtekamer M, Carballeira NM, van Duyl FC. Tracing 13C‐enriched dissolved and particulate organic carbon in the bacteria‐containing coral reef sponge Halisarca caerulea: evidence for DOM‐feeding. Limnol Oceanogr 2008; 53:1376–1386 [View Article]
    [Google Scholar]
  19. Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 2007; 71:295–347 [View Article] [PubMed]
    [Google Scholar]
  20. Bayer K, Scheuermayer M, Fieseler L, Hentschel U. Genomic mining for novel FADH2-dependent halogenases in marine sponge-associated microbial consortia. Mar Biotechnol 2013; 15:63–72 [View Article]
    [Google Scholar]
  21. Piel J. Metabolites from symbiotic bacteria. Nat Prod Rep 2009; 26:338–362 [View Article] [PubMed]
    [Google Scholar]
  22. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematic Chichester: Wiley; 1991 pp 115–148
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  24. Hall T, Biosciences I, Carlsbad C. BioEdit: an important software for molecular biology. GERF Bull Biosci 201160–61
    [Google Scholar]
  25. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  27. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  28. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  29. Kim J, Na S-I, Kim D, Chun J. UBCG2: up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609–615 [View Article]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  31. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  32. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  33. Zheng J, Ge Q, Yan Y, Zhang X, Huang L et al. dbCAN3: automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Res 2023; 51:W115–W121 [View Article]
    [Google Scholar]
  34. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  36. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  37. Zhang K, Zeng Q, Jiang R, Shi S, Yang J et al. Three novel marine species of Paracoccus, P. aerodenitrificans sp. nov., P. sediminicola sp. nov. and P. albus sp. nov., and the characterization of their capability to perform heterotrophic nitrification and aerobic denitrification. Microorganisms 2023; 11:1532 [View Article] [PubMed]
    [Google Scholar]
  38. Romanenko L, Bystritskaya E, Savicheva Y, Eremeev V, Otstavnykh N et al. Description and whole-genome sequencing of Mariniflexile litorale sp. nov., isolated from the shallow sediments of the sea of Japan. Microorganisms 2024; 12:1413 [View Article] [PubMed]
    [Google Scholar]
  39. Vollmer W, Bertsche U. Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta Biomembr 2008; 1778:1714–1734 [View Article]
    [Google Scholar]
  40. Oren A. Halophilic microbial communities and their environments. Curre Opin Biotechnol 2015; 33:119–124 [View Article]
    [Google Scholar]
  41. Kadam P, Khisti M, Ravishankar V, Barvkar V, Dhotre D et al. Recent advances in production and applications of ectoine, a compatible solute of industrial relevance. Bioresour Technol 2024; 393:130016 [View Article] [PubMed]
    [Google Scholar]
  42. Adam B, Zofia S. Subchronic effects of ectoine on survival, growth and physiological parameters of daphnia magna. J Aquac Res Dev 2015; 352:
    [Google Scholar]
  43. Adam B, Zofia S, Tadeusz S. Protective effects of ectoine on heat-stressed Daphnia magna. J Comp Physiol B 2014; 184:961–976 [View Article] [PubMed]
    [Google Scholar]
  44. Hollensteiner J, Schneider D, Poehlein A, Brinkhoff T, Daniel R. Pan-genome analysis of six Paracoccus type strain genomes reveal lifestyle traits. PLoS One 2023; 18:e0287947 [View Article] [PubMed]
    [Google Scholar]
  45. Mansour MMF, Ali EF. Evaluation of proline functions in saline conditions. Phytochemistry 2017; 140:52–68 [View Article]
    [Google Scholar]
  46. Mondal N, Roy C, Chatterjee S, Sarkar J, Dutta S et al. Thermal endurance by a hot-spring-dwelling phylogenetic relative of the mesophilic Paracoccus. Microbiol Spectr 2022; 10:e0160622 [View Article] [PubMed]
    [Google Scholar]
  47. Cristi A, Parada-Pozo G, Morales-Vicencio F, Cárdenas CA, Trefault N. Variability in host specificity and functional potential of Antarctic sponge-associated bacterial communities. Front Microbiol 2021; 12:771589 [View Article] [PubMed]
    [Google Scholar]
  48. Chen Y-H, Chen H-J, Yang C-Y, Shiu J-H, Hoh DZ et al. Prevalence, complete genome, and metabolic potentials of a phylogenetically novel cyanobacterial symbiont in the coral-killing sponge, Terpios hoshinota. Environ Microbiol 2022; 24:1308–1325 [View Article] [PubMed]
    [Google Scholar]
  49. Freeman CJ, Thacker RW. Complex interactions between marine sponges and their symbiotic microbial communities. Limnol Oceanogr 2011; 56:1577–1586 [View Article]
    [Google Scholar]
  50. Perry LB. Gliding motility in some non-spreading flexibacteria. J Appl Bacteriol 1973; 36:227–232 [View Article] [PubMed]
    [Google Scholar]
  51. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  52. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd. edn Washington, DC: American Society of Microbiology; 2007 pp 330–393 [View Article]
    [Google Scholar]
  53. Shin JY, Park JS. Muricauda spongiicola sp. nov., isolated from the sponge Callyspongia elongata. Int J Syst Evol Microbiol 2023; 73:005702 [View Article]
    [Google Scholar]
  54. Moon YL, Kim KH, Park JS. Muricauda myxillae sp. nov., isolated from a marine sponge (Myxilla rosacea), and reclassification of Flagellimonas hymeniacidonis as Muricauda symbiotica nom. nov. Int J Syst Evol Microbiol 2023; 73:006040 [View Article]
    [Google Scholar]
  55. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  56. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  57. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 1990
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006566
Loading
/content/journal/ijsem/10.1099/ijsem.0.006566
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error