Skip to content
1887

Abstract

A bacterial strain was isolated from pathogenic lesions of tree leaves from the Teutoburg Forest in North Rhine-Westphalia, Germany, by culture on non-selective agar plates. 16S rRNA sequencing revealed 100% similarity to and , as well as 99% similarity to and . Here, we used genome-based taxonomy with the Type (Strain) Genome Server (TYGS), which suggests the isolation of a novel prokaryotic strain. According to TYGS-analysis, using whole genome digital DNA–DNA hybridization, only 65.5% similarity to the closest relative was revealed, suggesting a novel species. Growth was observed at both aerobic and anaerobic conditions. Bacterial cells depicted coryneform motile rods, with a length of 1.1–3.3 µm and a constant diameter of 0.5 µm. Cells did not form spores under the tested conditions and stain Gram-positive. Growth occurred between 0.5 and 4% NaCl (optimal: 1%), at pH 5.5–9.5 (optimal: 8.0–9.0). The strain was mesophilic with an optimal growth at 25°C. Major cellular fatty acids of the novel strain were anteiso-C and C.

Funding
This study was supported by the:
  • Universität Bielefeld
    • Principal Award Recipient: ChristianKaltschmidt
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006560
2024-12-03
2025-11-11

Metrics

Loading full text...

Full text loading...

References

  1. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012; 13:614–629 [View Article] [PubMed]
    [Google Scholar]
  2. Stack RW, Lamey HA. Deciduous tree diseases. NDSU Ext Circ; 1995 https://library.ndsu.edu/ir/handle/10365/17238 accessed 27 September 2024
  3. Göker M, Oren A. Valid publication of names of two domains and seven kingdoms of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006242 [View Article] [PubMed]
    [Google Scholar]
  4. Fernández-Garayzábal JF, Dominguez L, Pascual C, Jones D, Collins MD. Phenotypic and phylogenetic characterization of some unknown coryneform bacteria isolated from bovine blood and milk: description of Sanguibacter gen.nov. Lett Appl Microbiol 1995; 20:69–75 [View Article] [PubMed]
    [Google Scholar]
  5. Hong SG, Lee YK, Yim JH, Chun J, Lee HK. Sanguibacter antarcticus sp. nov., isolated from Antarctic sea sand. Int J Syst Evol Microbiol 2008; 58:50–52 [View Article] [PubMed]
    [Google Scholar]
  6. Pikuta EV, Lyu Z, Williams MD, Patel NB, Liu Y et al. Sanguibacter gelidistatuariae sp. nov., a novel psychrotolerant anaerobe from an ice sculpture in Antarctica, and emendation of descriptions of the family Sanguibacteraceae, the genus Sanguibacter and species S. antarcticus, S. inulinus, S. kedieii, S. marinus, S. soli and S. suarezii. Int J Syst Evol Microbiol 2017; 67:1442–1450 [View Article] [PubMed]
    [Google Scholar]
  7. Pascual C, Collins MD, Grimont PAD, Dominguez L, Fernandez-Garayzabal JF. Sanguibacter inulinus sp. nov. Int J Syst Bacteriol 1996; 46:811–813 [View Article] [PubMed]
    [Google Scholar]
  8. Ma Q, Lei R-F, Li Y-Q, Abudourousuli D, Rouzi Z et al. Sanguibacter suaedae sp. nov., isolated from the root of Suaeda aralocaspica in north-west PR China. Int J Syst Evol Microbiol 2021; 71:005108 [View Article]
    [Google Scholar]
  9. Kim MK, Pulla RK, Kim S-Y, Yi T-H, Soung N-K et al. Sanguibacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2008; 58:538–541 [View Article] [PubMed]
    [Google Scholar]
  10. Bilen M, Founkou MDM, Cadoret F, Dubourg G, Daoud Z et al. Sanguibacter massiliensis sp. nov., Actinomyces minihominis sp. nov., Clostridium minihomine sp. nov., Neobittarella massiliensis gen. nov. and Miniphocibacter massiliensis gen. nov., new bacterial species isolated by culturomics from human stool samples. New Microb New Infect 2018; 24:21–25 [View Article]
    [Google Scholar]
  11. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  12. Asghari E, Kiel A, Kaltschmidt BP, Wortmann M, Schmidt N et al. Identification of microorganisms from several surfaces by MALDI-TOF MS: P. aeruginosa is leading in biofilm formation. Microorganisms 2021; 9:992 [View Article] [PubMed]
    [Google Scholar]
  13. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  14. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  15. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  16. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  17. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res 2021; 49:D1020–D1028 [View Article] [PubMed]
    [Google Scholar]
  18. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300 [View Article] [PubMed]
    [Google Scholar]
  19. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  21. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  22. Galperin MY, Wolf YI, Makarova KS, Vera Alvarez R, Landsman D et al. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res 2021; 49:D274–D281 [View Article] [PubMed]
    [Google Scholar]
  23. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  24. Kiel A, Kaltschmidt BP, Asghari E, Hütten A, Kaltschmidt B et al. Bacterial biofilm formation on nano-copper added PLA suited for 3D printed face masks. Microorganisms 2022; 10:439 [View Article] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article] [PubMed]
    [Google Scholar]
  26. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  27. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article]
    [Google Scholar]
  28. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008; 24:774–786 [View Article]
    [Google Scholar]
  29. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010; 17:337–354 [View Article] [PubMed]
    [Google Scholar]
  30. Cummings MP. PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)]. In Dictionary of Bioinformatics and Computational Biology John Wiley & Sons, Ltd; [View Article]
    [Google Scholar]
  31. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 2022; 38:5315–5316 [View Article]
    [Google Scholar]
  32. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  33. Letunic I, Bork P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res 2024; 52:W78–W82 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006560
Loading
/content/journal/ijsem/10.1099/ijsem.0.006560
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error