Skip to content
1887

Abstract

A novel protease-producing and cellulose-degrading actinobacterium, designated strain NEAU-NG30, was isolated from a melon rhizosphere soil sample collected in Harbin, Heilongjiang Province, China, and established its status using a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain NEAU-NG30 was closely related to Amycolatopsis bullii DSM 45802 (98.7%) and Amycolatopsis vancoresmycina DSM 44592 (98.3%). The phospholipid profile contained diphosphatidylglycerol, phosphatidyl methylethanolamine, phosphatidylethanolamine and phosphatidylinositol. The diagnostic sugars in cell hydrolysates were determined to be galactose and arabinose. Cell walls contained -diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinone was MK-9(H). The major fatty acids were iso-C and iso-C. Meanwhile, genome analysis of sequences revealed a genome size of 9 338 250 bp and a DNA G+C content of 71.6%. In addition, the average nucleotide identity values and the level of digital DNA–DNA hybridization between strain NEAU-NG30 and its reference strains fall below the thresholds typically used for delineating prokaryote species. According to phenotypic, chemotaxonomic and genotypic studies, it is indicated that strain NEAU-NG30 is considered to be a novel species of the genus , for which the name sp. nov. is proposed, with NEAU-NG30 (=MCCC 1K08677=JCM 35654) as the type strain.

Funding
This study was supported by the:
  • State Key Program of National Natural Science Foundation of China (Award 32030090)
    • Principal Award Recipient: WenshengXiang
  • National Key Research and Development Program of China (Award 2023YFD1700700)
    • Principal Award Recipient: WenshengXiang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006559
2024-10-29
2025-11-09

Metrics

Loading full text...

Full text loading...

References

  1. Zucchi TD, Bonda ANV, Frank S, Kim B-Y, Kshetrimayum JD et al. Amycolatopsis bartoniae sp. nov. and Amycolatopsis bullii sp. nov., mesophilic actinomycetes isolated from arid Australian soils. Antonie van Leeuwenhoek 2012; 102:91–98 [View Article]
    [Google Scholar]
  2. Brigham RB, Pittenger RC. Streptomyces orientalis sp. nov, the source of vancomycin. Antibiot Chemother 1956; 6:642
    [Google Scholar]
  3. Lechevalier MP, Prauser H, Labeda DP, Ruan J-S. Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Evol Bacteriol 1986; 36:29–37 [View Article]
    [Google Scholar]
  4. Idris H, Nouioui I, Pathom-aree W, Castro JF, Bull AT et al. Amycolatopsis vastitatis sp. nov., an isolate from a high altitude subsurface soil on Cerro Chajnantor, northern Chile. Antonie van Leeuwenhoek 2018; 111:1523–1533 [View Article]
    [Google Scholar]
  5. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  6. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic Actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  7. Takahashi Y. “Family pseudonocardiaceae,” in identification manual of Actinomycetes. In The Society for Actinomycetes Japan Tokyo: The Business Centre for Academic Societies; 2001
    [Google Scholar]
  8. Hayakawa M, Tamura T, Nonomura H. Selective isolation of Actinoplanes and Dactylosporangium from soil by using γ-collidine as the chemoattractant. J Ferment Bioeng 1991; 72:426–432 [View Article]
    [Google Scholar]
  9. Liu C, Zhuang X, Yu Z, Wang Z, Wang Y et al. Community structures and antifungal activity of root-associated endophytic actinobacteria of healthy and diseased soybean. Microorganisms 2019; 7:243 [View Article] [PubMed]
    [Google Scholar]
  10. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  11. Kim SB, Brown R, Gilbert SC, Iliarionov S. A novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000; 50:2031–2036 [View Article]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  13. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  18. Nikodinovic J, Barrow KD, Chuck JA. High yield preparation of genomic DNA from Streptomyces. Biotechniques 2003; 35:932–934 [View Article] [PubMed]
    [Google Scholar]
  19. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article] [PubMed]
    [Google Scholar]
  20. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article] [PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  22. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  24. Conway V, Gauthier SF, Pouliot Y. Antioxidant activities of buttermilk proteins, whey proteins, and their enzymatic hydrolysates. J Agric Food Chem 2013; 61:364–372 [View Article] [PubMed]
    [Google Scholar]
  25. Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP. Cellulase families revealed by hydrophobic cluster analysis. Gene 1989; 81:83–95 [View Article] [PubMed]
    [Google Scholar]
  26. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article]
    [Google Scholar]
  27. Waksman SA. The Actinomycetes. In Classification, Identification and Descriptions of Genera and Species Baltimore: Williams and Wilkins; 1961
    [Google Scholar]
  28. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145 [View Article] [PubMed]
    [Google Scholar]
  29. Waksman SA. The Actinomycetes. In A Summary of Current Knowledge New York: Ronald; 1967
    [Google Scholar]
  30. Kelly KL. Inter-Society Colour Council-National Bureau of Standards Colour-Name Charts Illustrated with Centroid Colours Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  31. Gregersen T. Rapid method for distinction of gram-negative from gram-postive bacteris. Eur J Appl Microbiol 1978; 24:54–63
    [Google Scholar]
  32. Jin L, Zhao Y, Song W, Duan L, Jiang S et al. Streptomyces inhibens sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2019; 69:688–695 [View Article]
    [Google Scholar]
  33. Cao P, Li C, Tan K, Liu C, Xu X et al. Characterization, phylogenetic analyses, and pathogenicity of Enterobacter cloacae on rice seedlings in Heilongjiang Province, China. Plant Dis 2020; 104:1601–1609 [View Article] [PubMed]
    [Google Scholar]
  34. Jia F, Liu C, Wang X, Zhao J, Liu Q et al. Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie van Leeuwenhoek 2013; 103:399–408 [View Article]
    [Google Scholar]
  35. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  36. Athalye M, Goodfellow M, Lacey J, White RP. Numerical classification of Actinomadura and Nocardiopsis. Int J Syst Bacteriol 1985; 35:86–98 [View Article]
    [Google Scholar]
  37. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., a novel actinobacterium isolated from dry-hotvalley in Yunnan, South-West China. Int J Syst Evol Microbiol 2012; 62:2650–2656 [View Article]
    [Google Scholar]
  38. Gordon RE, Barnett DA, Handerhan JE, Pang C-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  39. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. eds Bergey’s Manual of Systematic Bacteriology vol 4 Baltimore: Williams and Willkins; 1989 pp 2453–2492
    [Google Scholar]
  40. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of gram-positive bacteria. Lett Appl Microbiol 2000; 30:178–182
    [Google Scholar]
  41. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. eds Actinomycete Taxonomy Special Publication Arlington: Society of Industrial Microbiology; 1980 pp 227–291
    [Google Scholar]
  42. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  43. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. eds Chemical Methods in Bacterial Systematics Academic Press; 1985 pp 267–284
    [Google Scholar]
  44. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16:176–178
    [Google Scholar]
  45. Song J, Qiu S, Zhao J, Han C, Wang Y et al. Pseudonocardia tritici sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Antonie van Leeuwenhoek 2019; 112:765–773 [View Article] [PubMed]
    [Google Scholar]
  46. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014; 105:307–315 [View Article]
    [Google Scholar]
  47. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61:1165–1169 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006559
Loading
/content/journal/ijsem/10.1099/ijsem.0.006559
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error