Skip to content
1887

Abstract

Acetic acid bacteria – belonging to the family – are found in the gut of many sugar-feeding insects. In this study, six strains have been isolated from the hemipteran leafhopper . While they exhibit high 16S rRNA gene sequence similarities to uncultured members of the family, they could not be unequivocally assigned to any particular type species. Considering the clonality of the six isolates, the EV16P strain was used as a representative of this group of isolates. The genome sequence of EV16P is composed of a 2.388 Mbp chromosome, with a DNA G+C content of 57 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence and whole-genome multilocus sequence analysis indicate that EV16P forms a monophyletic clade with the uncultivated endosymbiont of , the Kirkpatrickella diaphorinae. Such a phylogenetic clade is positioned between those of and . The genomic distance metrics based on gene and protein sequences support the proposal that EV16P is a new species belonging to a yet-undescribed genus. It is a rod-shaped Gram-stain-negative bacterium, strictly aerobic, non-motile, non-spore-forming, showing optimal growth without salt (NaCl) at 30 °C and pH of 6–7. The major quinone is Q10, and the dominant cellular fatty acids (>10%) are C 7c, C cyclo 6c, C and C 2OH. The polar lipid profile comprises diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine, along with unidentified aminophospholipids, glycophospholipids, aminolipids and lipids. Based on a polyphasic approach, including phylogenetic, phylogenomic, genome relatedness, phenotypic and chemotaxonomic characterisations, EV16P (= KCTC 8296, = DSM 117028) is proposed as a representative of a novel species in a novel genus with the proposed name gen. nov., sp. nov., in honour of Prof. Claudia Sorlini, an Italian environmental microbiologist at the University of Milan who inspired the research on microbial diversity, including symbiosis in plants and animals.

Funding
This study was supported by the:
  • European Union - Next Generation EU (Award P20228WWB7)
    • Principal Award Recipient: ElenaCrotti
  • King Abdullah University of Science and Technology (KAUST) (Award baseline research funds)
    • Principal Award Recipient: DanieleDaffonchio
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006544
2024-10-21
2025-11-09

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/10/ijsem006544.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006544&mimeType=html&fmt=ahah

References

  1. Engel P, Moran NA. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 2013; 37:699–735 [View Article] [PubMed]
    [Google Scholar]
  2. Wang S, Wang L, Fan X, Yu C, Feng L et al. An insight into diversity and functionalities of gut microbiota in insects. Curr Microbiol 2020; 77:1976–1986 [View Article] [PubMed]
    [Google Scholar]
  3. Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G et al. Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 2010; 76:6963–6970 [View Article] [PubMed]
    [Google Scholar]
  4. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  5. Crotti E, Damiani C, Pajoro M, Gonella E, Rizzi A et al. Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environ Microbiol 2009; 11:3252–3264 [View Article] [PubMed]
    [Google Scholar]
  6. Gonella E, Crotti E, Mandrioli M, Daffonchio D, Alma A. Asaia symbionts interfere with infection by Flavescence dorée phytoplasma in leafhoppers. J Pest Sci 2018; 91:1033–1046 [View Article]
    [Google Scholar]
  7. Tang M, Lv L, Jing S, Zhu L, He G. Bacterial symbionts of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Appl Environ Microbiol 2010; 76:1740–1745
    [Google Scholar]
  8. He Y, Xie Z, Zhang H, Liebl W, Toyama H et al. Oxidative fermentation of acetic acid bacteria and its products. Front Microbiol 2022; 13:879246 [View Article]
    [Google Scholar]
  9. Henry E, Carlson CR, Kuo YW. Candidatus Kirkpatrickella diaphorinae gen. nov., sp. nov., an uncultured endosymbiont identified in a population of Diaphorina citri from Hawaii. Int J Syst Evol Microbiol 2023; 73:1–10 [View Article] [PubMed]
    [Google Scholar]
  10. Kim D-H, Chon J-W, Kim H, Seo K-H. Development of a novel selective medium for the isolation and enumeration of acetic acid bacteria from various foods. Food Control 2019; 106:106717 [View Article]
    [Google Scholar]
  11. Ryu J-H, Kim S-H, Lee H-Y, Bai JY, Nam Y-D et al. Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 2008; 319:777–782 [View Article] [PubMed]
    [Google Scholar]
  12. Kounatidis I, Crotti E, Sapountzis P, Sacchi L, Rizzi A et al. Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Appl Environ Microbiol 2009; 75:3281–3288 [View Article] [PubMed]
    [Google Scholar]
  13. Vacchini V, Gonella E, Crotti E, Prosdocimi EM, Mazzetto F et al. Bacterial diversity shift determined by different diets in the gut of the spotted wing fly Drosophila suzukii is primarily reflected on acetic acid bacteria. Environ Microbiol Rep 2017; 9:91–103 [View Article] [PubMed]
    [Google Scholar]
  14. Favia G, Ricci I, Damiani C, Raddadi N, Crotti E et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci U S A 2007; 104:9047–9051 [View Article] [PubMed]
    [Google Scholar]
  15. Corby-Harris V, Snyder L, Meador CAD, Naldo R, Mott B et al. Parasaccharibacter apium, gen. nov., sp. nov., improves honey bee (Hymenoptera: Apidae) resistance to Nosema. J Econ Entomol 2016; 109:537–543 [View Article] [PubMed]
    [Google Scholar]
  16. Sant’Anna MRV, Diaz-Albiter H, Aguiar-Martins K, Al Salem WS, Cavalcante RR et al. Colonisation resistance in the sand fly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection. Parasit Vectors 2014; 7:329 [View Article] [PubMed]
    [Google Scholar]
  17. Li L, Praet J, Borremans W, Nunes OC, Manaia CM et al. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int J Syst Evol Microbiol 2015; 65:267–273 [View Article] [PubMed]
    [Google Scholar]
  18. Chua K-O, Liew YJM, See-Too W-S, Tan J-Y, Yong H-S et al. Formicincola oecophyllae gen. nov. sp. nov., a novel member of the family Acetobacteraceae isolated from the weaver ant Oecophylla smaragdina. Antonie Van Leeuwenhoek 2022; 115:995–1007 [View Article] [PubMed]
    [Google Scholar]
  19. Guzman J, Sombolestani ASS, Poehlein A, Daniel R, Cleenwerck I et al. Entomobacter blattae gen. nov., sp. nov., a new member of the acetobacteraceae isolated from the gut of the cockroach Gromphadorhina portentosa. Int J Syst Evol Microbiol 2021; 71:004666
    [Google Scholar]
  20. Shin SC, Kim S-H, You H, Kim B, Kim AC et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 2011; 334:670–674 [View Article] [PubMed]
    [Google Scholar]
  21. Newell PD, Douglas AE. Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. . Appl Environ Microbiol 2014; 80:788–796 [View Article] [PubMed]
    [Google Scholar]
  22. Chouaia B, Rossi P, Epis S, Mosca M, Ricci I et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol 2012; 12 Suppl 1:S2 [View Article] [PubMed]
    [Google Scholar]
  23. Mitraka E, Stathopoulos S, Siden-Kiamos I, Christophides GK, Louis C. Asaia accelerates larval development of Anopheles gambiae. Pathog Glob Health 2013; 107:305–311 [View Article] [PubMed]
    [Google Scholar]
  24. Miller DL, Smith EA, Newton ILG. A bacterial symbiont protects honey bees from fungal disease. mBio 2021; 12:e0050321 [View Article] [PubMed]
    [Google Scholar]
  25. Guzman J, Won M, Poehlein A, Sombolestani AS, Mayorga-Ch D et al. Aristophania vespae gen. nov., sp. nov., isolated from wasps, is related to Bombella and Oecophyllibacter, isolated from bees and ants. Int J Syst Evol Microbiol 2023; 73:10 [View Article]
    [Google Scholar]
  26. Wiegmann BM, Trautwein MD, Kim J-W, Cassel BK, Bertone MA et al. Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 2009; 7:34 [View Article] [PubMed]
    [Google Scholar]
  27. Moran NA, Bennett GM. The tiniest tiny genomes. Annu Rev Microbiol 2014; 68:195–215 [View Article] [PubMed]
    [Google Scholar]
  28. Raspor P, Goranovic D. Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol 2008; 28:101–124 [View Article] [PubMed]
    [Google Scholar]
  29. Koufakis IE, Pappas ML, Kalaitzaki AP, Tsagkarakis AE, Thanou ZN et al. First record of two leafhoppers, Euscelis ohausi and Euscelidius variegatus, for the island of Crete, Greece (Hemiptera: Cicadellidae). Fragm Entomol 2022; 54:185–192
    [Google Scholar]
  30. Gonella E, Mandrioli M, Tedeschi R, Crotti E, Pontini M et al. Activation of immune genes in leafhoppers by phytoplasmas and symbiotic bacteria. Front Physiol 2019; 10:795 [View Article]
    [Google Scholar]
  31. Yamada Y, Katsura K, Kawasaki H, Widyastuti Y, Saono S et al. Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the alpha-Proteobacteria. Int J Syst Evol Microbiol 2000; 50 Pt 2:823–829 [View Article] [PubMed]
    [Google Scholar]
  32. Wu JJ, Ma YK, Zhang FF, Chen FS. Biodiversity of yeasts, lactic acid bacteria and acetic acid bacteria in the fermentation of “Shanxi aged vinegar”, a traditional Chinese vinegar. Food Microbiol 2012; 30:289–297 [View Article] [PubMed]
    [Google Scholar]
  33. Lane D. 16S/23S rrna sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York, NY: Wiley; 1991 pp 115–175
    [Google Scholar]
  34. Stackebrandt E, Liesack W. Nucleic acids and classification. In Goodfellow M, O’Donnell AG. eds Handbook of New Bacterial Systematics London, England: Academic Press; 1993 pp 152–189
    [Google Scholar]
  35. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  36. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  37. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  38. Loganathan P, Nair S. Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 2004; 54:1185–1190 [View Article] [PubMed]
    [Google Scholar]
  39. Lisdiyanti P, Kawasaki H, Widyastuti Y, Saono S, Seki T et al. Kozakia baliensis gen. nov., sp. nov., a novel acetic acid bacterium in the alpha-proteobacteria. Int J Syst Evol Microbiol 2002; 52:813–818 [View Article] [PubMed]
    [Google Scholar]
  40. Comandatore F, Damiani C, Cappelli A, Ribolla PEM, Gasperi G et al. Phylogenomics reveals that Asaia symbionts from insects underwent convergent genome reduction, preserving an insecticide-degrading gene. mBio 2021; 12:e00106-21 [View Article] [PubMed]
    [Google Scholar]
  41. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  42. Trček J, Barja F. Updates on quick identification of acetic acid bacteria with a focus on the 16S-23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDI-TOF mass spectrometry. Int J Food Microbiol 2015; 196:137–144 [View Article] [PubMed]
    [Google Scholar]
  43. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article]
    [Google Scholar]
  44. Alonge M, Lebeigle L, Kirsche M, Jenike K, Ou S et al. Automated assembly scaffolding using ragtag elevates a new tomato system for high-throughput genome editing. Genome Biol 2022; 23:258
    [Google Scholar]
  45. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  46. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genom 2021; 7:000685 [View Article] [PubMed]
    [Google Scholar]
  47. Karaoz U, Brodie EL. microTrait: A toolset for a trait-based representation of microbial genomes. Front Bioinform 2022; 2:918853 [View Article] [PubMed]
    [Google Scholar]
  48. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H et al. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 1999; 27:29–34 [View Article] [PubMed]
    [Google Scholar]
  49. Camargo AP, Roux S, Schulz F, Babinski M, Xu Y et al. Identification of mobile genetic elements with geNomad. Nat Biotechnol 2024; 42:1303–1312 [View Article] [PubMed]
    [Google Scholar]
  50. Price MN, Deutschbauer AM, Arkin AP. Filling gaps in bacterial catabolic pathways with computation and high-throughput genetics. PLoS Genet 2022; 18:e1010156 [View Article] [PubMed]
    [Google Scholar]
  51. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 2015; 3:e1319 [View Article] [PubMed]
    [Google Scholar]
  52. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2020; 36:1925–1927 [View Article]
    [Google Scholar]
  53. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  54. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  55. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  56. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and archaea based on a standard genome relatedness index. mBio 2020; 11:10–1128
    [Google Scholar]
  57. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  58. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  59. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  60. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  61. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:W479–W485 [View Article] [PubMed]
    [Google Scholar]
  62. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [View Article] [PubMed]
    [Google Scholar]
  63. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article]
    [Google Scholar]
  64. Hölzer M. POCP-nf: an automatic Nextflow pipeline for calculating the percentage of conserved proteins in bacterial taxonomy. Bioinformatics 2024; 40:btae175 [View Article] [PubMed]
    [Google Scholar]
  65. Kawai M, Higashiura N, Hayasaki K, Okamoto N, Takami A et al. Complete genome and gene expression analyses of Asaia bogorensis reveal unique responses to culture with mammalian cells as a potential opportunistic human pathogen. DNA Res 2015; 22:357–366 [View Article] [PubMed]
    [Google Scholar]
  66. Schmid J, Koenig S, Pick A, Steffler F, Yoshida S et al. Draft genome sequence of Kozakia baliensis SR-745, the first sequenced Kozakia strain from the family Acetobacteraceae. Genome Announc 2014; 2:e00594-14 [View Article] [PubMed]
    [Google Scholar]
  67. Lo W-S, Huang Y-Y, Kuo C-H. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev 2016; 40:855–874 [View Article] [PubMed]
    [Google Scholar]
  68. Qiu X, Zhang Y, Hong H. Classification of acetic acid bacteria and their acid resistant mechanism. AMB Express 2021; 11:29 [View Article] [PubMed]
    [Google Scholar]
  69. Chouaia B, Gaiarsa S, Crotti E, Comandatore F, Degli Esposti M et al. Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts. Genome Biol Evol 2014; 6:912–920 [View Article] [PubMed]
    [Google Scholar]
  70. Nakano S, Fukaya M. Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. Int J Food Microbiol 2008; 125:54–59 [View Article] [PubMed]
    [Google Scholar]
  71. Greenwich JL, Heckel BC, Alakavuklar MA, Fuqua C. The ChvG-ChvI regulatory network: A conserved global regulatory circuit among the Alphaproteobacteria with pervasive impacts on host interactions and diverse cellular processes. Annu Rev Microbiol 2023; 77:131–148 [View Article] [PubMed]
    [Google Scholar]
  72. Li L, Jia Y, Hou Q, Charles TC, Nester EW et al. A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci USA 2002; 99:12369–12374 [View Article]
    [Google Scholar]
  73. Römling U, Galperin MY. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 2015; 23:545–557 [View Article] [PubMed]
    [Google Scholar]
  74. Madigan MT, Martinko JM, Dunlap PV, Clark DP. Measuring microbial growth. Brock Biol Microorgan 2008; 11:128–132
    [Google Scholar]
  75. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580 [View Article] [PubMed]
    [Google Scholar]
  76. Deeraksa A, Moonmangmee S, Toyama H, Yamada M, Adachi O et al. Characterization and spontaneous mutation of a novel gene, polE, involved in pellicle formation in Acetobacter tropicalis SKU1100. Microbiology 2005; 151:4111–4120 [View Article] [PubMed]
    [Google Scholar]
  77. Carr JG. Methods for identifying acetic acid bacteria. Identification methods for microbiologists
    [Google Scholar]
  78. Armitano J, Méjean V, Jourlin-Castelli C. Gram-negative bacteria can also form pellicles. Environ Microbiol Rep 2014; 6:534–544 [View Article] [PubMed]
    [Google Scholar]
  79. Uğurel C, Öğüt H. Optimization of bacterial cellulose production by Komagataeibacter rhaeticus K23. Fibers 2024; 12:29 [View Article]
    [Google Scholar]
  80. Cumsille A, Durán RE, Rodríguez-Delherbe A, Saona-Urmeneta V, Cámara B et al. GenoVi, an open-source automated circular genome visualizer for bacteria and archaea. PLoS Comput Biol 2023; 19:e1010998 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006544
Loading
/content/journal/ijsem/10.1099/ijsem.0.006544
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error