1887

Abstract

The pathovar-based taxonomy of the group is very confusing due to an overlap of plant host ranges and level of host specificity. Here, whole-genome sequence-based parameters (digital DNA–DNA hybridization and -based average nucleotide identity), phylogenomic, biochemical and phenotypical data were used to taxonomically analyse the 11 known pathovars of the complex. This polyphasic approach taxonomically assigned the 11 pathovars of complex into three distinct species, two of which are new: , sp. nov. and sp. nov. consists of three pathovars: pv. (=pv. ), pv. strain A ICMP 16316 and pv. (=pv. ). sp. nov. encompasses the pv. strain LMG 679 and pv. strain B ICMP 16317 with genome similarity of 92.7% (dDDH) and 99.0% (ANIb) suggesting taxonomically similar genotypes. The other new species, sp. nov., consists of the remaining five designated pathovars (pv. , pv. pv. , pv. and pv. ) with highly variable dDDH and ANIb values ranging from 74.5 to 93.0% and from 96.7 to 99.2%, respectively, an indication of a very divergent taxonomic group. Only strains of pvs. and showed the highest genomic similarities of 93.0% (dDDH) and 99.2% (ANIb), suggesting synonymic pathovars as both infect the same plant hosts. The dDDH and ANI data were corroborated by phylogenomics clustering. The fatty acid contents were similar but the type strain of sp. nov. exhibited 20% less C iso and 40% more C iso fatty acids than the other species. Based on phenotypic, biochemical and whole-genome sequence data, we propose two new species, sp. nov. and sp. nov. with type strains LMG 679 (=NCPPB 1944) and LMG 726 (=NCPPB 2700), respectively.

Funding
This study was supported by the:
  • Agriculture and Agri-Food Canada (Award J-002749 and J-002272)
    • Principle Award Recipient: JamesT. Tambong
  • AB Grains (Award 22AWC135A)
    • Principle Award Recipient: RandyKutcher
  • MCA (Award MCA22-14)
    • Principle Award Recipient: RandyKutcher
  • SasKWheat (Award SWDC221-211124)
    • Principle Award Recipient: RandyKutcher
  • Western Grain Research Foundation (Award WGRF AGR2222)
    • Principle Award Recipient: RandyKutcher
  • University of Saskatchewan (Award USask 354653)
    • Principle Award Recipient: RandyKutcher
  • Manitoba Crop Alliance (Award MCA 2199)
    • Principle Award Recipient: RandyKutcher
  • Saskatchewan Barley Development Commission (Award SBDC # 5030)
    • Principle Award Recipient: RandyKutcher
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006523
2024-09-19
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/9/ijsem006523.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006523&mimeType=html&fmt=ahah

References

  1. Hayward AC. The host of Xanthomonas. In Swings JG, Civeroloand EL. eds Xanthomonas London, (UK): Chapman & Hall; 1993 pp 51–54
    [Google Scholar]
  2. Ryan RP, Vorhölter F-J, Potnis N, Jones JB, Van Sluys M-A et al. Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat Rev Microbiol 2011; 9:344–355 [View Article] [PubMed]
    [Google Scholar]
  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  4. Duveiller E, Bragard C, Maraite H. Bacterial leaf streak and black chaff caused by Xanthomonas translucens. In Duveiller E, Fucikovskil L, Rudolph K. eds The Bacterial Disease of Wheat: Concept and Methods of Disease Management Mexico, D.F: CIMMYT; 1997 pp 25–32
    [Google Scholar]
  5. Egli T, Goto M, Schmidt D. Bacterial Wilt, a new forage grass disease. J Phytopathol 1975; 82:111–121 [View Article]
    [Google Scholar]
  6. Hagborg WAF. The diagnosis of black chaff of wheat. Sci Agr 1946; 26:140–146
    [Google Scholar]
  7. Langlois PA, Snelling J, Hamilton JP, Bragard C, Koebnik R et al. Characterization of the Xanthomonas translucens complex using draft genomes, comparative genomics, phylogenetic analysis, and diagnostic LAMP assays. Phytopathology 2017; 107:519–527 [View Article] [PubMed]
    [Google Scholar]
  8. Sapkota S, Mergoum M, Liu Z. The translucens group of Xanthomonas translucens: complicated and important pathogens causing bacterial leaf streak on cereals. Mol Plant Pathol 2020; 21:291–302 [View Article] [PubMed]
    [Google Scholar]
  9. Sands DC, Fourrest E. Xanthomonas campestris pv. translucens in North and South America and in the Middle East. EPPO Bull 1989; 19:127–130 [View Article]
    [Google Scholar]
  10. Dye DW, Bradbury JF, Goto M, Hayward AC, Lelliot RA et al. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Ann Rev Plant Phytopathol 1980153
    [Google Scholar]
  11. Taylor C, Edwards M. Managing Canker and Dieback in Pistachios Australia: Victoria, Mildura: Department of Natural Resources and Environment, Agriculture; 2000
    [Google Scholar]
  12. Facelli E, Taylor C, Scott E, Emmett R, Fegan M et al. First report of a bacterial disease of pistachios. Austral Plant Pathol 2002; 31:95 [View Article]
    [Google Scholar]
  13. Facelli E, Taylor C, Scott E, Fegan M, Huys G et al. Identification of the causal agent of pistachio dieback in Australia. Eur J Plant Pathol 2005; 112:155–165 [View Article]
    [Google Scholar]
  14. Marefat A, Scott ES, Ophel‐Keller K, Sedgley M. Genetic, phenotypic and pathogenic diversity among xanthomonads isolated from pistachio (Pistacia vera) in Australia. Plant Pathol 2006; 55:639–649 [View Article]
    [Google Scholar]
  15. Maes M, Garbeva P, Kamoen O. Recognition and detection in seed of the Xanthomonas pathogens that cause cereal leaf streak using rDNA spacer sequences and polymerase chain reaction. Phytopathol 1996; 86:63 [View Article]
    [Google Scholar]
  16. Bragard C, Singer E, Alizadeh A, Vauterin L, Maraite H et al. Xanthomonas translucens from small grains: diversity and phytopathological relevance. Phytopathology 1997; 87:1111–1117 [View Article]
    [Google Scholar]
  17. Jones LR, Johnson AG, Reddy CS. n.d. Bacterial blight of barley. J Agric Res 1917:625–643
    [Google Scholar]
  18. Smith EF, Jones LR, Reddy CS. The black chaff of wheat. Science 1919; 50:48 [View Article] [PubMed]
    [Google Scholar]
  19. Zillinsky FJ, Borlaug NE. Progress in developing triticale as an economic crop. Bulletin 197118–21
    [Google Scholar]
  20. Azad H, Schaad NW. n.d. Serological relationships among membrane proteins of strains of Xanthomonas campestris pv. translucens. Phytopathol 1988:272–277 [View Article]
    [Google Scholar]
  21. Bragard C, Verdier V, Maraite H. Genetic diversity among Xanthomonas campestris strains pathogenic for small grains. Appl Environ Microbiol 1995; 61:1020–1026 [View Article] [PubMed]
    [Google Scholar]
  22. Elrod RP, Braun AC. Serological studies of the genus Xanthomonas; Xanthomonas translucens group. J Bacteriol 1947; 53:519–524 [View Article] [PubMed]
    [Google Scholar]
  23. Rademaker JLW, Norman DJ, Forster RL, Louws FJ, Schultz MH et al. Classification and Identification of Xanthomonas translucens isolates, including those pathogenic to ornamental asparagus. Phytopathology 2006; 96:876–884 [View Article] [PubMed]
    [Google Scholar]
  24. Schaad NW. Serological identification of plant pathogenic bacteria. Annu Rev Phytopathol 1979; 17:123–147 [View Article]
    [Google Scholar]
  25. Vauterin L, Swings J, Kersters K, Gillis M, Mew TW et al. Towards an improved taxonomy of Xanthomonas. Int J Syst Bacteriol 1990; 40:312–316 [View Article]
    [Google Scholar]
  26. Coenye T, Gevers D, Van de Peer Y, Vandamme P, Swings J. Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 2005; 29:147–167 [View Article] [PubMed]
    [Google Scholar]
  27. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [View Article] [PubMed]
    [Google Scholar]
  28. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genom 2013; 14:913 [View Article] [PubMed]
    [Google Scholar]
  29. Francis F, Kim J, Ramaraj T, Farmer A, Rush MC et al. Comparative genomic analysis of two Burkholderia glumae strains from different geographic origins reveals a high degree of plasticity in genome structure associated with genomic islands. Mol Genet Genom 2013; 288:195–203 [View Article] [PubMed]
    [Google Scholar]
  30. Lang JM, Langlois P, Nguyen MHR, Triplett LR, Purdie L et al. Sensitive detection of Xanthomonas oryzae Pathovars oryzae and oryzicola by loop-mediated isothermal amplification. Appl Environ Microbiol 2014; 80:4519–4530 [View Article] [PubMed]
    [Google Scholar]
  31. Rasko DA, Rosovitz MJ, Myers GSA, Mongodin EF, Fricke WF et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 2008; 190:6881–6893 [View Article] [PubMed]
    [Google Scholar]
  32. Harrison J, Hussain RMF, Aspin A, Grant MR, Vicente JG et al. Phylogenomic analysis supports the transfer of 20 pathovars from Xanthomonas campestris into Xanthomonas euvesicatoria. Taxonomy 2023; 3:29–45 [View Article]
    [Google Scholar]
  33. Constantin EC, Cleenwerck I, Maes M, Baeyen S, Van Malderghem C et al. Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathol 2016; 65:792–806 [View Article]
    [Google Scholar]
  34. Zarei S, Taghavi SM, Rahimi T, Mafakheri H, Potnis N et al. Taxonomic refinement of Xanthomonas arboricola. Phytopathol 2022PHYTO12210519R [View Article]
    [Google Scholar]
  35. Curland RD, Gao L, Bull CT, Vinatzer BA, Dill-Macky R et al. Genetic diversity and virulence of wheat and barley strains of Xanthomonas translucens from the upper midwestern United States. Phytopathology 2018; 108:443–453 [View Article]
    [Google Scholar]
  36. Goettelmann F, Roman-Reyna V, Cunnac S, Jacobs JM, Bragard C et al. Complete genome assemblies of all Xanthomonas translucens pathotype strains reveal three genetically distinct clades. Front Microbiol 2021; 12:817815 [View Article] [PubMed]
    [Google Scholar]
  37. Tambong JT, Xu R, Fleitas MC, Wang L, Hubbard K et al. Phylogenomic insights on the Xanthomonas translucens complex, and development of a TaqMan real-time assay for specific detection of pv. translucens on Barley. Phytopathology 2023; 113:2091–2102 [View Article] [PubMed]
    [Google Scholar]
  38. Giblot-Ducray D, Marefat A, Gillings MR, Parkinson NM, Bowman JP et al. Proposal of Xanthomonas translucens pv. pistaciae pv. nov., pathogenic to pistachio (Pistacia vera). Syst Appl Microbiol 2009; 32:549–557 [View Article] [PubMed]
    [Google Scholar]
  39. Vesth T, Lagesen K, Acar Ö, Ussery D. CMG-biotools, a free workbench for basic comparative microbial genomics. PLoS One 2013; 8:e60120 [View Article] [PubMed]
    [Google Scholar]
  40. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  41. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  43. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  44. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  45. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [View Article] [PubMed]
    [Google Scholar]
  46. Kim J, Na S-I, Kim D, Chun J. UBCG2: up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609–615 [View Article] [PubMed]
    [Google Scholar]
  47. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019; 35:4453–4455 [View Article] [PubMed]
    [Google Scholar]
  48. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  49. Sun J, Lu F, Luo Y, Bie L, Xu L et al. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res 2023; 51:W397–W403 [View Article]
    [Google Scholar]
  50. Tambong JT, Xu R, Bromfield ESP. Pseudomonas canadensis sp. nov., a biological control agent isolated from a field plot under long-term mineral fertilization. Int J Syst Evol Microbiol 2017; 67:889–895 [View Article] [PubMed]
    [Google Scholar]
  51. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  52. Tambong JT, Xu R, Gerdis S, Daniels GC, Chabot D et al. Molecular analysis of bacterial isolates from necrotic wheat leaf lesions caused by Xanthomonas translucens, and description of three putative novel species, Sphingomonas albertensis sp. nov., Pseudomonas triticumensis sp. nov. and Pseudomonas foliumensis sp. nov. Front Microbiol 2021; 12:666689 [View Article] [PubMed]
    [Google Scholar]
  53. Ryu E. A simple method of differentiation between gram-positive and gram-negative organisms without staining. Kitasato Archives Exp Med J 1940; 17:58–63
    [Google Scholar]
  54. Vauterin L, Hoste B, Kersters K, Swings J. Reclassification of Xanthomonas. Inter J Syst Bacteriol 1995; 45:472–489 [View Article]
    [Google Scholar]
  55. Bradbury JF. Xanthomonas campestris Pv. hordei United Kingdom: Farnham Royal, Slough: C.A.B. International Mycological Institute; 1986
    [Google Scholar]
  56. Tambong JT. Taxogenomics and Systematics of the genus Pantoea. Front Microbiol 2019; 10:2463 [View Article]
    [Google Scholar]
  57. Sneath PHA. Analysis and interpretation of sequence data for bacterial systematics: the view of a numerical taxonomist. Syst Appl Microbiol 1989; 12:15–31 [View Article]
    [Google Scholar]
  58. Stackebrandt E. The richness of prokaryotic diversity: there must be a species somewhere. Food Technol Biotechnol 2003; 41:17–22
    [Google Scholar]
  59. Stead DE. Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Inter J Syst Bacteriol 1992; 42:281–295 [View Article]
    [Google Scholar]
  60. Yang P, Vauterin L, Vancanneyt M, Swings J, Kersters K. Application of fatty acid methyl esters for the taxonomic analysis of the genus Xanthomonas. Syst Appl Microbiol 1993; 16:47–71 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006523
Loading
/content/journal/ijsem/10.1099/ijsem.0.006523
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error