1887

Abstract

https://doi.org/10.1099/ijsem.0.006541

Two-novel filamentous actinobacteria designated strains 2-2 and 2-15 were isolated from soil of a coal mining site in Mongolia, and their taxonomic positions were determined using a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that each of the strains formed a distinct clade within the genus . The 16S rRNA gene sequence similarity analysis showed that both strains were mostly related to NCIMB 14900 with 99.0 and 99.4% sequence similarity, respectively. The genome-based comparison indicated that strain 2-2 shared the highest digital DNA–DNA hybridization value of 35.6% and average nucleotide identity value of 86.9% with DSM 44654, and strain 2-15 shared the corresponding values of 36.5 and 87.9% with NCIMB 14900, all of which being well below the thresholds for species delineation. The chemotaxonomic properties of both strains were typical of the genus . prediction of chemotaxonomic markers was also carried out, and the results were consistent with the chemotaxonomic profiles of the genus. Genome mining for secondary metabolite production in strains 2-2 and 2-15 revealed the presence of 29 and 24 biosynthetic gene clusters involved in the production of polyketide synthase, non-ribosomal peptide synthetase, ribosomally synthesized and post-translationally modified peptides, lanthipeptide, terpenes, siderophore, and a number of other unknown type compounds. Both strains showed broad antifungal activity against several filamentous fungi and also antibacterial activity against methicillin-resistant and . The phenotypic, biochemical, and chemotaxonomic properties indicated that both strains could be clearly distinguished from other species of , and thus the names sp. nov. (type strain, 2-2=KCTC 29695=JCM 30462) and (type strain, 2-15=KCTC 39525=JCM 30563) are proposed accordingly.

Funding
This study was supported by the:
  • National Research Foundation of Korea (Award NRF2022H1D3A2A0109635111)
    • Principle Award Recipient: BilguunOyuntsetseg
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006511
2024-09-10
2024-11-10
Loading full text...

Full text loading...

References

  1. Lechevalier MP, Prauser H, Labeda DP, Ruan JS. Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Bacteriol 1986; 36:29–37 [View Article]
    [Google Scholar]
  2. Lee SD. Amycolatopsis jejuensis sp. nov. and Amycolatopsis halotolerans sp. nov., novel actinomycetes isolated from a natural cave. Int J Syst Evol Microbiol 2006; 56:549–553 [View Article] [PubMed]
    [Google Scholar]
  3. Li R, Wang M, Ren Z, Ji Y, Yin M et al. Amycolatopsis aidingensis sp. nov., a a halotolerant actinobacterium, produces new secondary metabolites. Front Microbiol 2021; 12:743116 [View Article]
    [Google Scholar]
  4. Saintpierre-Bonaccio D, Amir H, Pineau R, Tan GYA, Goodfellow M. Amycolatopsis plumensis sp. nov., a novel bioactive actinomycete isolated from a New-Caledonian brown hypermagnesian ultramafic soil. Int J Syst Evol Microbiol 2005; 55:2057–2061 [View Article] [PubMed]
    [Google Scholar]
  5. Tatar D, Sazak A, Guven K, Cetin D, Sahin N. Amycolatopsis cihanbeyliensis sp. nov., a halotolerant actinomycete isolated from a salt mine. Int J Syst Evol Microbiol 2013; 63:3739–3743 [View Article] [PubMed]
    [Google Scholar]
  6. Carlsohn MR, Groth I, Tan GY, Schütze B, Saluz H-P et al. Amycolatopsis saalfeldensis sp. nov., a novel actinomycete isolated from a medieval alum slate mine. Int J Syst Evol Microbiol 2007; 57:1640–1646 [View Article] [PubMed]
    [Google Scholar]
  7. Everest GJ, Meyers PR. Evaluation of the antibiotic biosynthetic potential of the genus Amycolatopsis and description of Amycolatopsis circi sp. nov., Amycolatopsis equina sp. nov. and Amycolatopsis hippodromi sp. nov. J Appl Microbiol 2011; 111:300–311 [View Article] [PubMed]
    [Google Scholar]
  8. Everest GJ, le Roes-Hill M, Omorogie C, Cheung S-K, Cook AE et al. Amycolatopsis umgeniensis sp. nov., isolated from soil from the banks of the Umgeni River in South Africa. Antonie van Leeuwenhoek 2013; 103:673–681 [View Article] [PubMed]
    [Google Scholar]
  9. Zucchi TD, Bonda ANV, Frank S, Kim B-Y, Kshetrimayum JD et al. Amycolatopsis bartoniae sp. nov. and Amycolatopsis bullii sp. nov., mesophilic actinomycetes isolated from arid Australian soils. Antonie van Leeuwenhoek 2012; 102:91–98 [View Article] [PubMed]
    [Google Scholar]
  10. Zakalyukina YV, Osterman IA, Wolf J, Neumann-Schaal M, Nouioui I et al. Amycolatopsis camponoti sp. nov., new tetracenomycin-producing actinomycete isolated from carpenter ant Camponotus vagus. Antonie van Leeuwenhoek 2022; 115:533–544 [View Article] [PubMed]
    [Google Scholar]
  11. Wink JM, Kroppenstedt RM, Ganguli BN, Nadkarni SR, Schumann P et al. Three new antibiotic producing species of the genus amycolatopsis, amycolatopsis balhimycina sp nov., A. tolypomycina sp. nov., A. vancoresmycina sp. nov., and description of Amycolatopsis keratiniphila subsp. keratiniphila subsp. nov. and A. keratiniphila subsp. nogabecina subsp. nov. Syst Appl Microbiol 2003; 26:38–46 [View Article]
    [Google Scholar]
  12. Labeda DP, Donahue JM, Williams NM, Sells SF, Henton MM. Amycolatopsis kentuckyensis sp. nov., Amycolatopsis lexingtonensis sp. nov. and Amycolatopsis pretoriensis sp. nov., isolated from equine placentas. Int J Syst Evol Microbiol 2003; 53:1601–1605 [View Article] [PubMed]
    [Google Scholar]
  13. Souza WR, Silva RE, Goodfellow M, Busarakam K, Figueiro FS et al. Amycolatopsis rhabdoformis sp. nov., an actinomycete isolated from a tropical forest soil. Int J Syst Evol Microbiol 2015; 65:1786–1793 [View Article] [PubMed]
    [Google Scholar]
  14. Kisil OV, Efimenko TA, Efremenkova OV. Looking back to Amycolatopsis: history of the antibiotic discovery and future prospects. Antibiotics 2021; 10:1254 [View Article] [PubMed]
    [Google Scholar]
  15. Foldes M, Munro R, Sorrell TC, Shanker S, Toohey M. In-vitro effects of vancomycin, rifampicin, and fusidic acid, alone and in combination, against methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 1983; 11:21–26 [View Article] [PubMed]
    [Google Scholar]
  16. Xu L, Huang H, Wei W, Zhong Y, Tang B et al. Complete genome sequence and comparative genomic analyses of the vancomycin-producing Amycolatopsis orientalis. BMC Genomics 2014; 15:363 [View Article] [PubMed]
    [Google Scholar]
  17. Sepkowitz KA, Raffalli J, Riley L, Kiehn TE, Armstrong D. Tuberculosis in the AIDS era. Clin Microbiol Rev 1995; 8:180–199 [View Article] [PubMed]
    [Google Scholar]
  18. Bala S, Khanna R, Dadhwal M, Prabagaran SR, Shivaji S et al. Reclassification of Amycolatopsis mediterranei DSM 46095 as Amycolatopsis rifamycinica sp. nov. Int J Syst Evol Microbiol 2004; 54:1145–1149 [View Article] [PubMed]
    [Google Scholar]
  19. Song Z, Xu T, Wang J, Hou Y, Liu C et al. Secondary metabolites of the genus Amycolatopsis: structures, bioactivities and biosynthesis. Molecules 2021; 26:1884 [View Article]
    [Google Scholar]
  20. Oyuntsetseg B, Cho S-H, Jeon SJ, Lee HB, Shin K-S et al. Amycolatopsis acidiphila sp. nov., a moderately acidophilic species isolated from coal mine soil. Int J Syst Evol Microbiol 2017; 67:3387–3392 [View Article] [PubMed]
    [Google Scholar]
  21. Oyuntsetseg B, Lee HB, Kim SB. Amycolatopsis mongoliensis sp. nov., a novel actinobacterium with antifungal activity isolated from a coal mining site in mongolia. Int J Syst Evol Microbiol 2024; 74:006266 [View Article]
    [Google Scholar]
  22. Seong CN. Numerical taxonomy of acidophilic and neutrotolerant actinomycetes isolated from acid soil in Korea. PhD thesis Seoul; Republic of Korea: 1992
    [Google Scholar]
  23. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: Wiley; 1991 pp 115–175
    [Google Scholar]
  24. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  25. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3033–3027 [View Article] [PubMed]
    [Google Scholar]
  26. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. eds Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132 [View Article]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  29. Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRDand ViPR. Nucleic Acids Res 2022; 51:D678–D689 [View Article] [PubMed]
    [Google Scholar]
  30. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27–30 [View Article] [PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  32. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300 [View Article]
    [Google Scholar]
  33. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article]
    [Google Scholar]
  34. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In Tech. Note #101 Newark, DE:
    [Google Scholar]
  35. Nguyen TM, Jaisoo K. A rapid and simple method for identifying bacterial polar lipid components in wet biomass. J Microbiol 2017; 55:635–639 [View Article] [PubMed]
    [Google Scholar]
  36. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  37. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG T\tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  38. Mary P, Lechevalier CDB, Hubert L. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syste Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  39. Fotedar R, Caldwell ME, Sankaranarayanan K, Al -Zeyara A, Al-Malki A et al. Ningiella ruwaisensis gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from marine water of the Arabian Gulf. Int J Syst Evol Microbiol 2020; 70:4130–4138 [View Article]
    [Google Scholar]
  40. Baek I, Kim M, Lee I, Na S-I, Goodfellow M et al. Phylogeny trumps chemotaxonomy: a case study involving Turicella otitidis. Front Microbiol 2018; 9:834 [View Article] [PubMed]
    [Google Scholar]
  41. Wolucka BA. Biosynthesis of D-arabinose in mycobacteria - a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J 2008; 275:2691–2711 [View Article] [PubMed]
    [Google Scholar]
  42. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structuresand visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006511
Loading
/content/journal/ijsem/10.1099/ijsem.0.006511
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error