Skip to content
1887

Abstract

https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.006538

A survey of fructophilic lactic acid bacteria associated with wild and cultivated plants in the metropolitan area of Valencia (Spain) led to the isolation of a novel strain of the genus , named Es01, from flowers of . The genus encompasses a single species, . Partial 16S rRNA coding gene sequencing revealed a similarity of 98.8% to SGEP1_A5. Average nucleotide identity (ANI) calculations revealed an ANI value of 80.49% with strain SGEP1_A5, the only strain with an available genomic sequence. A digital DNA–DNA hybridization value of 20% was estimated by the Type Strain Genome Server tool when Es01 was compared with strain SGEP1_A5. On the basis of these results, strain Es01 represents a novel species, for which the name sp. nov. is proposed with Es01 (=CECT 30999=DSMZ 117325=CCM 9394) as type strain.

Funding
This study was supported by the:
  • Ministerio de Ciencia, Innovación y Universidades (Award PID2020-11960RB-I00)
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006497
2024-08-27
2025-05-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/8/ijsem006497.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006497&mimeType=html&fmt=ahah

References

  1. Endo A, Futagawa-Endo Y, Dicks LMT. Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches. Syst Appl Microbiol 2009; 32:593–600 [View Article] [PubMed]
    [Google Scholar]
  2. Endo A. Fructophilic lactic acid bacteria inhabit fructose-rich niches in nature. Microb Ecol Health Dis 2012; 23:18563 [View Article] [PubMed]
    [Google Scholar]
  3. Endo A, Maeno S, Tanizawa Y, Kneifel W, Arita M et al. Fructophilic lactic acid bacteria, a unique group of fructose-fermenting microbes. Appl Environ Microbiol 2018; 84:e01290-01218 [View Article] [PubMed]
    [Google Scholar]
  4. Endo A, Tanaka N, Oikawa Y, Okada S, Dicks L. Fructophilic characteristics of Fructobacillus spp. may be due to the absence of an alcohol/acetaldehyde dehydrogenase gene (adhE). Curr Microbiol 2014; 68:531–535 [View Article] [PubMed]
    [Google Scholar]
  5. Maeno S, Kajikawa A, Dicks L, Endo A. Introduction of bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) in Fructobacillus fructosus settled its fructophilic characteristics. Res Microbiol 2019; 170:35–42 [View Article] [PubMed]
    [Google Scholar]
  6. Kandler O. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 1983; 49:209–224 [View Article] [PubMed]
    [Google Scholar]
  7. Oliphant SA, Watson-Haigh NS, Sumby KM, Gardner J, Groom S et al. Apilactobacillus apisilvae sp. nov., Nicolia spurrieriana gen. nov. sp. nov., Bombilactobacillus folatiphilus sp. nov. and Bombilactobacillus thymidiniphilus sp. nov., four new lactic acid bacterial isolates from stingless bees Tetragonula carbonaria and Austroplebeia australis. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  8. Deshmukh UB, Oren A. Proposal of Christiangramia gen. nov., Neomelitea gen. nov. and Nicoliella gen. nov. as replacement names for the illegitimate prokaryotic generic names Gramella Nedashkovskaya et al. 2005, Melitea Urios et al. 2008 and Nicolia Oliphant et al. 2022, respectively. Int J Syst Evol Microbiol 2023; 73: [View Article]
    [Google Scholar]
  9. Lane DJ. 16S/23S rRNA sequencing. In E S, M G. eds Nucleic Acid Techniques in Bacterial Systematics New York: Wiley; 1991 pp 115–175
    [Google Scholar]
  10. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782–2858 [View Article]
    [Google Scholar]
  11. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  12. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  14. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 2013; 30:1188–1195 [View Article] [PubMed]
    [Google Scholar]
  15. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  16. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  17. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  18. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  19. Manni M, Berkeley MR, Seppey M, Zdobnov EM. BUSCO: assessing genomic data quality and beyond. Curr Protoc 2021; 1:e323 [View Article] [PubMed]
    [Google Scholar]
  20. Galaxy C. The galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update. Nucleic Acids Res 2024; 52:W83–W94 [View Article]
    [Google Scholar]
  21. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  22. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300 [View Article] [PubMed]
    [Google Scholar]
  23. Tian R, Imanian B. VBCG: 20 validated bacterial core genes for phylogenomic analysis with high fidelity and resolution. Microbiome 2023; 11:247 [View Article] [PubMed]
    [Google Scholar]
  24. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008; 25:1307–1320 [View Article] [PubMed]
    [Google Scholar]
  25. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  26. Grant JR, Enns E, Marinier E, Mandal A, Herman EK et al. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 2023; 51:W484–W492 [View Article] [PubMed]
    [Google Scholar]
  27. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  29. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN:a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  31. Aarnikunnas J, Rönnholm K, Palva A. The mannitol dehydrogenase gene (mdh) from Leuconostoc mesenteroides is distinct from other known bacterial mdh genes. Appl Microbiol Biotechnol 2002; 59:665–671 [View Article] [PubMed]
    [Google Scholar]
  32. Reva O, Tümmler B. Think big--giant genes in bacteria. Environ Microbiol 2008; 10:768–777 [View Article] [PubMed]
    [Google Scholar]
  33. Tamarit D, Ellegaard KM, Wikander J, Olofsson T, Vásquez A et al. Functionally structured genomes in Lactobacillus kunkeei colonizing the honey crop and food products of honeybees and stingless bees. Genom Biol Evol 2015; 7:1455–1473 [View Article] [PubMed]
    [Google Scholar]
  34. Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E et al. Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 2012; 7:e33188 [View Article] [PubMed]
    [Google Scholar]
  35. Syariffah Nuratiqah SY, Fahrul H, Raja Kamarulzaman Raja I, Roswanira AW. Identification of Lactobacillus spp. and Fructobacillus spp. isolated from fresh heterotrigona itama honey and their antagonistic activities against clinical pathogenic bacteria. J Apic Res 2018; 57:11 [View Article]
    [Google Scholar]
  36. Koch H, Abrol DP, Li J, Schmid-Hempel P. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol 2013; 22:2028–2044 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006497
Loading
/content/journal/ijsem/10.1099/ijsem.0.006497
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error