1887

Abstract

The present study used whole-genome data to clarify the taxonomic assignment of two closely related species. Genomic information for 10 type strains was available at the time of conducting this analysis. One group of type strains was found to be conspecific, namely Kämpfer . 1999 and Pathom-aree . 2006. The 16S rRNA gene sequences showed 99 % similarity between these type strains. Whole-genome-based comparisons showed that DSM 44343 and DSM 44944 shared 98.07 % average nucleotide identity, 98.29 % average amino acid identity and 84.80 % digital DNA–DNA hybridization values. These values exceeded the threshold values for bacterial species delineation. Further, phylogenomic analysis based on the core genomes of the strains under study confirmed that DSM 44343 and DSM 44944 formed a monophyletic clade. Based on this evidence, we propose the reclassification of Pathom-aree . 2006 as a later heterotypic synonym of Kämpfer . 1999.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006485
2024-08-13
2024-09-15
Loading full text...

Full text loading...

References

  1. Kämpfer P, Andersson MA, Rainey FA, Kroppenstedt RM, Salkinoja-Salonen M. Williamsia muralis gen. nov., sp. nov., isolated from the indoor environment of a children’s day care centre. Int J Syst Evol Microbiol 1999; 49:681–687 [View Article]
    [Google Scholar]
  2. Murray RJ, Aravena-Román M, Kämpfer P. Endophthalmitis due to Williamsia muralis. J Med Microbiol 2007; 56:1410–1412 [View Article] [PubMed]
    [Google Scholar]
  3. del Mar Tomas M, Moure R, Saez Nieto JA, Fojon S, Fernandez A et al. Williamsia muralis pulmonary infection. Emerg Infect Dis 2005; 11:1324–1325 [View Article] [PubMed]
    [Google Scholar]
  4. Yassin AF, Hupfer H. Williamsia deligens sp. nov., isolated from human blood. Int J Syst Evol Microbiol 2006; 56:193–197 [View Article] [PubMed]
    [Google Scholar]
  5. Yassin AF, Lombardi SJ, Fortunato SJ, McNabb PC, Carr MB et al. Perinatal sepsis caused by Williamsia serinedens infection in a 31-year-old pregnant woman. J Clin Microbiol 2010; 48:2626–2629 [View Article] [PubMed]
    [Google Scholar]
  6. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  7. Jukes TH, Cantor CR. Evolution of the protein molecules. In Munro HN. ed Mammalian Protein Metabolism New York: Academic Press; 1969 pp 21–132
    [Google Scholar]
  8. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  9. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  10. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  11. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article] [PubMed]
    [Google Scholar]
  12. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  13. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  14. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article] [PubMed]
    [Google Scholar]
  15. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  16. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  17. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res 2021; 49:D1020–D1028 [View Article]
    [Google Scholar]
  18. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [View Article] [PubMed]
    [Google Scholar]
  19. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  20. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  21. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  22. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007; 23:127–128 [View Article] [PubMed]
    [Google Scholar]
  23. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  24. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2019; 69:S1–S111 [View Article]
    [Google Scholar]
  25. Pathom-Aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K et al. Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol 2006; 56:1123–1126 [View Article] [PubMed]
    [Google Scholar]
  26. Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 2015; 43:W566–W570 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006485
Loading
/content/journal/ijsem/10.1099/ijsem.0.006485
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error