Skip to content
1887

Abstract

A Gram-stain-positive, aerobic, moderate halophilic actinobacterium, designated strain YIM 96095, was isolated from a saline soil sample collected from Aiding Lake, Xinjiang, North-western China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate belonged to the family , formed a distinct subclade, and was most closely related to DSM 102030 and DSM 45697 with sequence identity values of 95.8 and 95.1%, respectively. Optimal growth occurred at 37 °C, pH 7.0–8.0 and with 5–16% (w/v) NaCl, with well-developed, non-fragmented substrate mycelia and single-, double-, or triple-wrinkled spore(s) on the mature aerial hyphae. The chemical analysis presented -diaminopimelic acid as the diagnostic diamino acid of the cell-wall peptidoglycan, and glucose, galactose and rhamnose as the major whole-cell sugars, and iso-C and anteiso-C as the major fatty acids. The phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, unidentified phospholipids and unidentified glycolipid. The menaquinones were MK-10(H), MK-10(H) and MK-9(H). Its G+C content was 69.7 mol% in the determined genome sequence. Based on phenotypic, chemotaxonomic and phylogenetic characteristics, a novel genus and species named gen. nov., sp. nov. is proposed for isolate YIM 96095 (=KCTC 49266=CGMCC 4.7636).

Funding
This study was supported by the:
  • the rural revitalization project of Serving Yunnan (Award CZ22624401)
    • Principle Award Recipient: Shu-KunTang
  • Scientific and Technological Development Project of Yunnan Province (Award 2017FE467-125, 2019FE001-131, 202201BF070001-006)
    • Principle Award Recipient: Shu-KunTang
  • Chunhui Project for Ministry of Education of China (Award Project No. 191649)
    • Principle Award Recipient: Shu-KunTang
  • Natural Science Foundation of Guangdong Province (Award 2017A030310206)
    • Principle Award Recipient: Shu-KunTang
  • National Natural Science Foundation of China (Award 31760003)
    • Principle Award Recipient: Shu-KunTang
  • Major Science and Technology Projects in Yunnan Province (Award 202202AE09001)
    • Principle Award Recipient: Shu-KunTang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006484
2024-10-04
2025-07-09
Loading full text...

Full text loading...

References

  1. Kroppenstedt Reiner Michael, Evtushenko Lyudmila I. The Family Nocardiopsaceae. In Dworkin Martin, Falkow StanleyS, Rosenberg Eugene, Schleifer Karl-Heinz, Stackebrandt Erko. eds The Prokaryotes: Volume 3: Archaea Bacteria: Firmicutes, Actinomycetes New York, NY: Springer New York; 2006 pp 754–795
    [Google Scholar]
  2. Rainey FA, Ward-rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Evol Microbiol 1996; 46:1088–1092 [View Article] [PubMed]
    [Google Scholar]
  3. Meyer J. Nocardiopsis, a new genus of the order Actinomycetales. Int J Syst Bacteriol 1976; 26:487–493 [View Article]
    [Google Scholar]
  4. Cui Xiao-Long, Mao Pei-Hong, Zeng Min, Li Wen-Jun, Zhang Li-Ping et al. Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 2001; 51:357–363 [View Article] [PubMed]
    [Google Scholar]
  5. Zhang Zhen-shui, Wang Yue, Ruan Ji-sheng. Reclassification of Thermomonospora and Microtetraspora. Int J Syst Evol Microbiol 1998; 48:411–422 [View Article]
    [Google Scholar]
  6. Tian Xin-Peng, Tang Shu-Kun, Dong Jun-De, Zhang Yu-Qin, Xu Li-Hua et al. Marinactinospora thermotolerans gen. nov., sp. nov., a marine actinomycete isolated from a sediment in the northern South China Sea. Int J Syst Evol Microbiol 2009; 59:948–952 [View Article] [PubMed]
    [Google Scholar]
  7. Tang Shu-Kun, Tian Xin-Peng, Zhi Xiao-Yang, Cai Man, Wu Jin-Yuan et al. Haloactinospora alba gen. nov., sp. nov., a halophilic filamentous actinomycete of the family Nocardiopsaceae. Int J Syst Evol Microbiol 2008; 58:2075–2080 [View Article] [PubMed]
    [Google Scholar]
  8. Chang Xian-Bo, Liu Wen-Zheng, Zhang Xiao-Hua. Spinactinospora alkalitolerans gen. nov., sp. nov., an actinomycete isolated from marine sediment. Int J Syst Evol Microbiol 2011; 61:2805–2810 [View Article] [PubMed]
    [Google Scholar]
  9. Chang Xian-Bo, Liu Wen-Zheng, Zhang Xiao-Hua. Salinactinospora qingdaonensis gen. nov., sp. nov., a halophilic actinomycete isolated from a salt pond. Int J Syst Evol Microbiol 2012; 62:954–959 [View Article] [PubMed]
    [Google Scholar]
  10. Kämpfer P., Schäfer J., Lodders N., Martin K. Murinocardiopsis flavida gen. nov., sp. nov., an actinomycete isolated from indoor walls. Int J Syst Evol Microbiol 2010; 60:1729–1734 [View Article]
    [Google Scholar]
  11. Guo Lin, Tuo Li, Habden Xugela, Zhang Yu-Qin, Liu Jia-Meng et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article] [PubMed]
    [Google Scholar]
  12. Liu Min-Jiao, Zhu Wen -Yong, Li Jie, Zhao Guo-Zhen, Xiong Zhi et al. Actinorugispora endophytica gen. nov., sp. nov., an actinomycete isolated from Daucus carota. Int J Syst Evol Microbiol 2015; 65:2562–2568 [View Article] [PubMed]
    [Google Scholar]
  13. Zhang Yong-Guang, Lu Xin-Hua, Ding Yan-Bo, Wang Su-Juan, Zhou Xing-Kui et al. Lipingzhangella halophila gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 2016; 66:4071–4076 [View Article]
    [Google Scholar]
  14. Ng Zoe-Yi, Fang Bao-Zhu, Li Wen-Jun, Tan Geok Yuan Annie. Marinitenerispora sediminis gen. nov., sp. nov., a member of the family Nocardiopsaceae isolated from marine sediment. Int J Syst Evol Microbiol 2019; 69:3031–3040 [View Article] [PubMed]
    [Google Scholar]
  15. Claverías Fernanda P., Serna-Cardona Néstor, Cumsille Andrés, Zamora-Leiva Leonardo, Riesco Raúl et al. Spiractinospora alimapuensis gen. nov., sp. nov., isolated from marine sediment of Valparaíso Bay (Chile) and proposal for reclassification of two species of the genus Nocardiopsis. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  16. Shirling E. B., Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol 1966; 16:313–340 [View Article]
    [Google Scholar]
  17. Xu Ping, Li Wen-Jun, Tang Shu-Kun et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  18. Gonzalez Carmen, Gutierrez Carmen, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article] [PubMed]
    [Google Scholar]
  19. Staneck Joseph L., Roberts Glenn D. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article]
    [Google Scholar]
  20. Hasegawa Tōru, Takizawa Masayuki, Tanida Seiich. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  21. Tang Shu-Kun, Wang Yun, Chen Yun, Lou Kai, Cao Lan-Lan et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 2009; 59:2025–2032 [View Article]
    [Google Scholar]
  22. Minnikin David E., O’Donnell Anthony G., Goodfellow Michael, Alderson Grace, Athalye M. et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  23. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. Distribution of menaquinones in actinomycetes and corynebacteria. Int J Syst Evol Microbiol 1977; 100:221–230 [View Article]
    [Google Scholar]
  24. Groth Ingrid, Schumann P., Rainey F. A, Martin Karin, Schuetze Barbara et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Evol Microbiol 1997; 47:1129–1133 [View Article]
    [Google Scholar]
  25. Sasser M. Craig. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
  26. Feng Yu-Zhou, Chunyu Wei-Xun, Liang Rui, Hahnke Richard L., Schumann Peter et al. Vallicoccus soli gen. nov., sp. nov., a novel actinobacterium isolated from soil, and description of Vallicoccaceae fam. nov. Antonie van Leeuwenhoek 2020; 113:2155–2165 [View Article] [PubMed]
    [Google Scholar]
  27. Yoon Seok Hwan, Ha Sung Min, Kwon Soonjae, Lim Jeongmin, Kim Yeseul et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  28. Thompson Julie D., Gibson Toby J., Plewniak Frédéric, Jeanmougin François, Higgins Desmond G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  29. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  30. Felsenstein Joseph. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  31. Fitch Walter M. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  32. Kumar Sudhir, Stecher Glen, Tamura Koichiro. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  33. Felsenstein Joseph. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  34. Chun Jongsik, Oren Aharon, Ventosa Antonio, Christensen Henrik, Arahal David Ruiz et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  35. Lim H. J., Lee EH, Yoon Y., Chua B., Son A. Portable lysis apparatus for rapid single-step DNA extraction of Bacillus subtilis. J Appl Microbiol 2016; 120:379–387 [View Article] [PubMed]
    [Google Scholar]
  36. Li Rui-Qiang, Zhu Hong-Mei, Ruan Jue, Qian Wu-Bin, Fang Xiao-Dong et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article]
    [Google Scholar]
  37. Stamatakis Alexandros. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  38. Li Rui, Zhang Zhou-Tian-Le, Wang Yun, Jiang Gang-Qiang, Yin Min et al. Paenibacillus alkalitolerans sp. nov., a bacterium isolated from a salt lake of Turpan City in Xinjiang Province, north-west China. Folia Microbiol 2023; 68:115–120 [View Article] [PubMed]
    [Google Scholar]
  39. Thomas Paul D., Ebert Dustin, Muruganujan Anushya, Mushayahama Tremayne, Albou Laurent-Philippe et al. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci 2022; 31:8–22 [View Article] [PubMed]
    [Google Scholar]
  40. Meier-Kolthoff Jan P., Auch Alexander F., Klenk Hans-Peter, Göker Markus. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  41. Ming Hong, Nie Guo-Xing, Jiang Hong-Chen, Yu Tian-Tian, Zhou En-Min et al. Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China. Antonie van Leeuwenhoek 2012; 102:297–305 [View Article] [PubMed]
    [Google Scholar]
  42. Kanehisa Minoru, Goto Susumu. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000; 28:27–30 [View Article]
    [Google Scholar]
  43. Auch Alexander F., von Jan Mathias, Klenk Hans Peter, Göker Markus. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  44. Alanjary Mohammad, Steinke Katharina, Ziemert Nadine. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  45. Avram Oren, Rapoport Dana, Portugez Shir, Pupko Tal. M1CR0B1AL1Z3R-a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Res 2019; 47:W88–W92 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006484
Loading
/content/journal/ijsem/10.1099/ijsem.0.006484
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error