Skip to content
1887

Abstract

A comprehensive polyphasic taxonomic investigation integrating taxongenomic criteria was conducted on strain IRAMC:0171 isolated from the root nodules of in Tunisia. This Gram-stain-negative and aerobic bacterium thrived within a temperature range of 5–45 °C, optimal at 28 °C, and tolerated salt concentrations from 0–6 % NaCl, with an optimal range of 0–3 %. It displayed pH tolerance from pH 4 to 10, thriving best at pH 6.8–7.5. Chemotaxonomically, strain IRAMC:0171 was characterized by diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and phosphatidylethanolamine as polar lipids. Its predominant fatty acid composition was C 7c (61.2 %), and the primary ubiquinone was Q10 (97 %). Analysis of the 16S rRNA gene of strain IRAMC:0171 showed 99.08 % similarity to ICMP 19557, ACCC 19665, and IAM 14158. However, digital DNA–DNA hybridization and average nucleotide identity analyses revealed values ranging from 21.1 to 25.2 % and 77.05 to 82.24 %, respectively, signifying significant deviation from established species demarcation thresholds. Phylogenetic studies, encompassing 16S rRNA, whole-genome-based tree reconstruction, and core protein analysis, positioned strain IRAMC:0171 closest to KCTC 72278 and ‘’ UASWS1009, forming together a distinct branch within the genus . In consideration of this comprehensive data, we propose strain IRAMC:0171 (=DSM 112841=CECT 30767) as the type strain of a new species named sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006478
2024-07-30
2025-06-14
Loading full text...

Full text loading...

References

  1. Mergaert J, Swings J. Family IV. Phyllobacteriaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol 2 New York: Springer; 2005 p 393
    [Google Scholar]
  2. Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP et al. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 1997; 47:895–898 [View Article]
    [Google Scholar]
  3. Chen WX, Wang ET, Kuykendall KD. Mesorhizobium. In Bergey’s Manual of Systematics of Archaea and Bacteria vol 2015 2015 pp 1–11 [View Article]
    [Google Scholar]
  4. Laranjo M, Alexandre A, Oliveira S. Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 2014; 169:2–17 [View Article]
    [Google Scholar]
  5. De Meyer SE, Tan HW, Andrews M, Heenan PB, Willems A. Mesorhizobium calcicola sp. nov., Mesorhizobium waitakense sp. nov., Mesorhizobium sophorae sp. nov., Mesorhizobium newzealandense sp. nov. and Mesorhizobium kowhaii sp. nov. isolated from Sophora root nodules. Int J Syst Evol Microbiol 2016; 66:786–795 [View Article]
    [Google Scholar]
  6. Siddiqi MZ, Shah S, Choi KD, Lee SY, Kim SY et al. Mesorhizobium hankyongi sp. nov. isolated from soil of ginseng cultivating field. Curr Microbiol 2018; 75:1453–1459 [View Article] [PubMed]
    [Google Scholar]
  7. Yuan C-G, Jiang Z, Xiao M, Zhou E-M, Kim C-J et al. Mesorhizobium sediminum sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2016; 66:4797–4802 [View Article] [PubMed]
    [Google Scholar]
  8. Mahdhi M, Nzoué A, de Lajudie P, Mars M. Characterization of root-nodulating bacteria on Retama raetam in arid Tunisian soils. Prog Nat Sci 2008; 18:43–49 [View Article]
    [Google Scholar]
  9. Ferchichi A. La lutte contre l’ensablement et pour la stabilisation des dunes: Essai de la fixation biologique des dunes en Tunisie présaharienne. Recherches sur la désertification dans la Jeffara. Rev Tunis Geogr 1996; 12:49–102
    [Google Scholar]
  10. Rodríguez-Echeverría S, Pérez-Fernández MA, Vlaar S, Finan TM. Analysis of the legume-rhizobia symbiosis in shrubs from central western Spain. J Appl Microbiol 2003; 95:1367–1374 [View Article] [PubMed]
    [Google Scholar]
  11. Farida B, Géraldine D, Abdelghani B, Djellali B, Said B et al. Retama species growing in different ecological–climatic areas of northeastern Algeria have a narrow range of rhizobia that form a novel phylogenetic clade within the Bradyrhizobium genus. Syst Appl Microbiol 2009; 32:245–255 [View Article]
    [Google Scholar]
  12. Guerrouj K, Ruíz-Díez B, Chahboune R, Ramírez-Bahena M-H, Abdelmoumen H et al. Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst Appl Microbiol 2013; 36:218–223 [View Article] [PubMed]
    [Google Scholar]
  13. Alami S, Lamin H, Bennis M, Bouhnik O, Lamrabet M et al. Characterization of Retama sphaerocarpa microsymbionts in Zaida lead mine tailings in the Moroccan middle Atlas. Syst Appl Microbiol 2021; 44:126207 [View Article] [PubMed]
    [Google Scholar]
  14. Mosbah M, Mars M. Genotypic diversity of rhizobia isolated from Retama raetam in arid regions of Tunisia. Ann Microbiol 2006; 56:305–311 [View Article]
    [Google Scholar]
  15. Vincent JM. A manual for the practical study of the root-nodule bacteria: IBP Handbk 15 Oxford and Edinburgh: Blackwell Scientific Publication; 1970 p 164
  16. Ausubel FM. Current Protocols in Molecular Biology New York: Wiley; 2003
    [Google Scholar]
  17. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  19. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  20. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series Oxford: 1999 pp 95–98
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  22. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969; 18:1–32 [View Article]
    [Google Scholar]
  23. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  24. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016; 32:3047–3048 [View Article] [PubMed]
    [Google Scholar]
  25. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  26. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  27. Grant JR, Enns E, Marinier E, Mandal A, Herman EK et al. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 2023; 51:W484–W492 [View Article]
    [Google Scholar]
  28. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  29. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  30. Kim J, Na S-I, Kim D, Chun J. UBCG2: up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609–615 [View Article] [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  32. Hölzer M. POCP-nf: an automatic Nextflow pipeline for calculating the percentage of conserved proteins in bacterial taxonomy. Bioinformatics 2024; 40:btae175 [View Article] [PubMed]
    [Google Scholar]
  33. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genom 2008; 9:1–15 [View Article] [PubMed]
    [Google Scholar]
  34. Jung YJ, Kim HJ, Hur M. Mesorhizobium terrae sp. nov., a novel species isolated from soil in Jangsu, Korea. Antonie van Leeuwenhoek 2020; 113:1279–1287 [View Article] [PubMed]
    [Google Scholar]
  35. Smibert RM, Krieg NR. Phenotypic characterization. In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; pp 607–654
    [Google Scholar]
  36. Aygan A, Arikan B. An overview on bacterial motility detection. Int J Agr Biol 2007; 9:193–196
    [Google Scholar]
  37. Vaas LAI, Sikorski J, Hofner B, Fiebig A, Buddruhs N et al. opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 2013; 29:1823–1824 [View Article] [PubMed]
    [Google Scholar]
  38. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  39. Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M et al. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol 2021; 71:004631 [View Article]
    [Google Scholar]
  40. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  41. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Meth Gen Mol Microbiol 2007330–393 [View Article]
    [Google Scholar]
  42. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  43. Vadez V, Rodier F, Payre H, Drevon J-J. Nodule permeability to O2 and nitrogenase-linked respiration in bean genotypes varying in the tolerance of N2 fixation to P deficiency. Plant Physiol Biochem 1996; 34:871–878
    [Google Scholar]
  44. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  45. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  46. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  47. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  48. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  49. Crovadore J, Cochard B, Calmin G, Chablais R, Schulz T et al. Whole-genome sequence of Mesorhizobium hungaricum sp. nov. strain UASWS1009, a potential resource for agricultural and environmental uses. Genom Announc 2016; 4:10–1128 [View Article] [PubMed]
    [Google Scholar]
  50. Li Y, Guo T, Sun L, Wang E-T, Young JPW et al. Phylogenomic analyses and reclassification of the Mesorhizobium complex: proposal for 9 novel genera and reclassification of 15 species. BMC Genom 2024; 25:419 [View Article]
    [Google Scholar]
  51. Chen WX, Li GS, Qi YL, Wang ET, Yuan HL et al. Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 1991; 41:275–280 [View Article]
    [Google Scholar]
  52. Wang S, Hao B, Li J, Gu H, Peng J et al. Whole-genome sequencing of Mesorhizobium huakuii 7653R provides molecular insights into host specificity and symbiosis island dynamics. BMC Genom 2014; 15:440 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006478
Loading
/content/journal/ijsem/10.1099/ijsem.0.006478
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error