Skip to content
1887

Abstract

Strain T-12, an orange, Gram-stain-negative, non-motile, rod-shaped strain, was isolated in November 2013 from water samples collected from an Atlantic salmon () fry culturing system at a fish farm in Chile. Phylogenetic analysis based on 16S rRNA sequences (1394 bp) revealed that strain T-12 belonged to the genus , showing close relationships to F-372 (99.48 %) and DS-20 (98.50 %). The genome size of strain T-12 was 3.28 Mb, with a G+C content of 31.1 mol%. Genome comparisons aligned strain T-12 with F-372 (GCA_011305415) and DSM 17934 (GCA_900108955). The highest digital DNA–DNA hybridization (dDDH) values were 42.6 % with F-372 (GCA_011305415) and 33.9 % with DSM 17934 (GCA_900108955). Pairwise average nucleotide identity (ANI) calculations were below the species cutoff, with the best results with F-372 being: ANIb, 90.33 %; ANIm, 91.85 %; and TETRA, 0.997 %. These dDDH and ANI results confirm that strain T-12 represents a new species. The major fatty acids were iso-C and Cω6. Detected polar lipids included phospholipids (=2), aminophospholipid (=1), aminolipid (=1) and unidentified lipids (=2). The predominant respiratory quinone was menaquinone MK7 (80 %) followed by MK-6 (20 %). Phenotypic, chemotaxonomic, and genomic data support the classification of strain T-12 (=CECT 30410=RGM 3222) as representing a novel species of , for which the name sp. nov. is proposed.

Funding
This study was supported by the:
  • Agencia Nacional de Investigación y Desarrollo (Award FONDAP 1523A0007)
    • Principle Award Recipient: RubenAvendaño-Herrera
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006468
2024-07-26
2025-07-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/7/ijsem006468.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006468&mimeType=html&fmt=ahah

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. Genus II. Flavobacterium gen. In Bergey’s Manual of Determinative Bacteriology, 1st. Baltimore, MD: Williams and Wilkins; 1923 pp 97–117
    [Google Scholar]
  2. Bernardet JF, Bowman JP et al. Flavobacterium. In Trujillo ME, Dedysh S, DeVos P, Helund B, Kämpfer P et al. eds Bergeys´s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Ltd; 2005 pp 1–75 [View Article]
    [Google Scholar]
  3. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian Knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978).. Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  4. Wahli T, Madsen L. Flavobacteria, a never ending threat for fish: a review. Curr Clin Micro Rpt 2018; 5:26–37 [View Article]
    [Google Scholar]
  5. Nematollahi A, Decostere A, Pasmans F, Haesebrouck F. Flavobacterium psychrophilum infections in salmonid fish. J Fish Dis 2003; 26:563–574 [View Article] [PubMed]
    [Google Scholar]
  6. SERNAPESCA Informe Sanitario con información sanitaria de agua dulce y mar año 2022 (enero-noviembre) de salmonicultura en centros marinos. Departamento de Salud Animal, Subdirección de Acuicultura; 2023 p 54
  7. Valdebenito S, Avendaño-Herrera R. Phenotypic, serological and genetic characterization of Flavobacterium psychrophilum strains isolated from salmonids in Chile. J Fish Dis 2009; 32:321–333 [View Article] [PubMed]
    [Google Scholar]
  8. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989; 17:7843–7853 [View Article] [PubMed]
    [Google Scholar]
  9. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp 1999; 41:95–98
    [Google Scholar]
  10. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Syst Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  11. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol and Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  12. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19:1572–1574 [View Article] [PubMed]
    [Google Scholar]
  13. Gavriilidou A, Gutleben J, Versluis D, Forgiarini F, van Passel MWJ et al. Comparative genomic analysis of Flavobacteriaceae: insights into carbohydrate metabolism, gliding motility and secondary metabolite biosynthesis. BMC Genomics 2020; 21:569 [View Article] [PubMed]
    [Google Scholar]
  14. Neath AA, Cavanaugh JE. The Bayesian information criterion: background, derivation, and applications. WIREs Comp Stat 2012; 4:199–203 [View Article]
    [Google Scholar]
  15. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  16. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  17. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  18. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  19. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 2014; 31:1077–1088 [View Article] [PubMed]
    [Google Scholar]
  20. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  21. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  22. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  23. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  24. Abby SS, Denise R, Rocha EPC. Identification of protein secretion systems in bacterial genomes using MacSyFinder version 2. In Bacterial Secretion Systems Springer US; pp 1–25 [View Article]
    [Google Scholar]
  25. Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol 2020; 11:1–23 [View Article] [PubMed]
    [Google Scholar]
  26. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR et al. CARD 2023: expanded curation, support for machine learning,and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res 2023; 51:D690–D699 [View Article] [PubMed]
    [Google Scholar]
  27. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–D692 [View Article] [PubMed]
    [Google Scholar]
  28. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  29. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 MIDI Inc; 1990
    [Google Scholar]
  30. MIDI Sherlock Microbial Identification System Operating Manual. version 6.1 Newark, DE: MIDI Inc; 2008
    [Google Scholar]
  31. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  32. Tindall BJ, Sikorski J, Smibert RM, Kreig NR et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. eds Methods for General and Molecular Microbiology ASM Press; 2007 pp 330–393 [View Article]
    [Google Scholar]
  33. Saticioglu IB, Ay H, Altun S, Sahin N, Duman M. Flavobacterium bernardetii sp. nov., a possible emerging pathogen of farmed rainbow trout (Oncorhynchus mykiss) in cold water. Aquaculture 2021; 540:736717 [View Article]
    [Google Scholar]
  34. Yoon J-H, Kang S-J, Lee J-S, Oh T-K. Flavobacterium terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 2007; 57:947–950 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006468
Loading
/content/journal/ijsem/10.1099/ijsem.0.006468
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error